

Mono- and dichlorido terbium(III) and erbium(III) complexes coordinated by diazabutadiene ligands in different redox states

Dmitry M. Lyubov, Anton V. Cherkasov and Alexander A. Trifonov

Experimental section

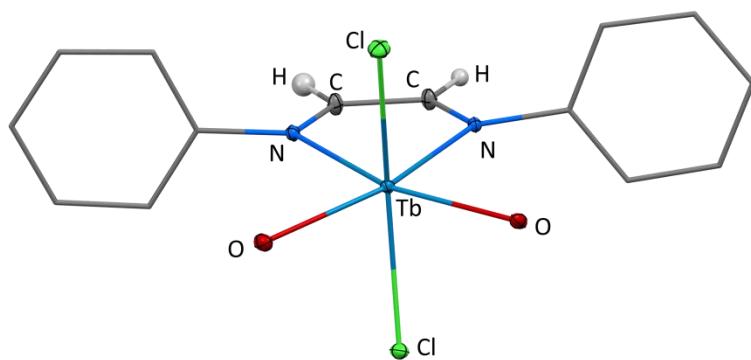
All operations were carried out under an argon atmosphere using Schlenk techniques or in nitrogen filled glovebox. THF and toluene were purified by distillation from sodium/benzophenone ketyl and degassed thoroughly. Hexane was dried by distillation from sodium/triglyme and benzophenone ketyl prior to use. LnCl_3 ^{S1} and DAD^{2R} ($2,6\text{-Pr}^i_2\text{C}_6\text{H}_3\text{-NC(R)C(R)NC}_6\text{H}_3\text{Pr}^i_2\text{-2,6}$) ($\text{R} = \text{H, Me}$)^{S2} were prepared according to literature procedures. Lanthanide metal analysis was carried out by complexonometric titration.^{S3} IR spectra were recorded as Nujol mulls on a Bruker-Vertex 70 spectrophotometer. The C, H, N elemental analyses were performed in the microanalytical laboratory of the G. A. Razuvayev Institute of Organometallic Chemistry.

Synthesis of $[(\text{DAD}^{2\text{H}})\text{Tb}(\text{THF})_2(\mu\text{-Cl})_2](\text{THF})$ (1a). A solution of $(\text{DAD}^{2\text{H}})\text{K}_2(\text{THF})_n$ generated *in situ* (THF, rt, 48 h) from DAD^{2H} (0.650 g, 1.73 mmol) and potassium metal (0.140 g, 3.46 mmol) was added slowly to a suspension of TbCl_3 (0.460 g, 1.73 mmol) in THF (10 mL). The resulted solution was stirred at ambient temperature for 12 h, then all volatiles were removed in vacuum, and the solid residue was extracted from KCl with toluene (30 mL). The toluene extract was filtered, toluene was evaporated in vacuum. Recrystallization of the resulting solid from THF/hexane mixture at 20 °C afforded orange crystals of **1a** in 69% yield (0.895 g, 0.59 mmol). Elemental analysis calcd (%) for: $\text{C}_{68}\text{H}_{104}\text{Cl}_2\text{N}_4\text{O}_4\text{Tb}_2\cdot(\text{C}_4\text{H}_8\text{O})$ (1502.44 g mol⁻¹): C, 57.56; H, 7.51; N, 3.73; Tb, 21.16; Found: C, 57.70; H, 7.73; N, 3.59; Tb, 20.98. IR (Nujol, KBr) ν/cm^{-1} : 1590 (m), 1310 (s), 1260 (s), 1240 (m), 1200 (s), 1100 (m), 1075 (m), 1020 (s), 935 (m), 880 (m), 860 (s), 800 (s), 755 (s), 670 (m), 590 (w), 535 (w), 485 (w).

^{S1} M. D. Taylor and C. P. Carter, *J. Inorg. Nucl. Chem.*, 1962, **24**, 387.

^{S2} M. Svoboda and H. T. Dieck, *J. Organomet. Chem.*, 1980, **191**, 321.

^{S3} S. J. Lyle and M. M. Rahman, *Talanta*, 1963, **10**, 1177.


Synthesis of $[(DAD^{2H})Er(THF)_2(\mu-Cl)]_2$ (1b). A solution of $(DAD^{2H})K_2(THF)_n$ generated *in situ* (THF, rt, 48 h) from DAD^{2H} (0.210 g, 0.56 mmol) and potassium metal (0.045 g, 1.12 mmol) was added slowly to a suspension of $ErCl_3$ (0.152 g, 0.56 mmol) in THF (10 mL). The resulted solution was stirred at ambient temperature for 12 h, then all volatiles were removed in vacuum, and the solid residue was extracted from KCl with toluene (30 mL). The toluene extract was filtered, toluene was evaporated in vacuum. Recrystallization of the resulting solid from THF/hexane mixture at 20 °C afforded orange yellow crystals of **1b** in 74% yield (0.30 g). Elemental analysis calcd. (%) for: $C_{68}H_{104}Cl_2Er_2N_4O_4$ (1446.97 g mol⁻¹): C, 56.44; H, 7.24; N, 3.87; Er, 23.12. Found: C, 56.15; H, 7.19; N, 4.11; Er, 22.90. IR (Nujol, KBr) ν/cm^{-1} : 1585 (s), 1570 (s), 1430 (s), 1355 (s), 1310 (s), 1245 (s), 1205 (s), 1110 (s), 1075 (s), 1020 (s), 925 (s), 860 (s), 800 (s), 755 (s), 680 (s), 580 (s), 535 (m), 485 (m) cm^{-1} .

Synthesis of $[(DAD^{2Me})Tb(THF)_2(\mu-Cl)]_2(THF)$ (2). Complex **2** was synthesized and isolated analogously to **1a** starting from *in situ* generated $(DAD^{2Me})K_2(THF)_n$ (DAD^{2Me} : 0.345 g, 0.85 mmol; potassium metal: 0.070 g, 1.71 mmol; THF, rt, 48 h) and $TbCl_3$ (0.225 g, 0.85 mmol). Complex **2** was isolated as yellow crystals in 72% yield (0.30 g). Elemental analysis calcd (%) for: $C_{72}H_{112}Cl_2N_4O_4Tb_2\cdot(C_4H_8O)$ (1558.55 g/mol): C, 58.57; H, 7.76; N, 3.59; Tb, 20.39. Found: C, 58.70; H, 7.72; N, 3.45; Tb, 20.11. IR (Nujol, KBr) ν/cm^{-1} : 1640 (m), 1585 (s), 1425 (s), 1305 (s), 1250 (s), 1200 (m), 1155 (s), 1115 (m), 1105 (m), 1055 (w), 1030 (m), 1020 (s), 1005 (m), 990 (m), 935 (s), 885 (s), 870 (m), 850 (m), 795 (w), 785 (s), 765 (m), 665 (s), 635 (m), 600 (s), 540 (s), 500 (m).

Synthesis of $(DAD^{2H})TbCl_2(THF)_2$ (3a). A solution of $(DAD^{2H})K(THF)_n$ generated *in situ* (THF, rt, 48 h) from DAD^{2H} (0.760 g, 2.02 mmol) and potassium metal (0.080 g, 2.02 mmol) was added slowly to a suspension of $TbCl_3$ (0.520 g, 2.02 mmol) in THF (10 mL). The resulted solution was stirred at ambient temperature for 12 h, then all volatiles were removed in vacuum, and the solid residue was extracted from KCl with toluene (30 mL). The toluene extract was filtered, toluene was evaporated in vacuum. Recrystallization of the resulting solid from THF/hexane mixture at 20 °C afforded red crystals of **3a** in 73% yield (1.120 g, 1.49 mmol). Elemental analysis calcd (%) for $C_{34}H_{52}Cl_2N_2O_2Tb$ (750.62 g mol⁻¹): C, 54.40; H, 6.98; N, 3.73; Tb, 21.17. Found: C, 54.52; H, 6.90; N, 3.70; Tb, 21.03. IR (Nujol, KBr): 1580 (s), 1540 (s), 1430 (s), 1365 (s), 1320 (s), 1260 (s), 1235 (s), 1200 (s), 1100 (s), 1055 (s), 1040 (s), 1010 (s), 920 (s), 840 (s), 800 (s), 760 (s), 675 (s), 590 (m), 530 (s), 435 (m) cm^{-1} .

Synthesis of (DAD^{2H})ErCl₂(THF)₂ (3b). Complex **3b** was synthesized and isolated analogously to **3a** starting from *in situ* generated (DAD^{2H})K(THF)_n (DAD^{2H}: 0.406 g, 1.08 mmol; potassium metal: 0.042 g, 1.08 mmol; THF, rt, 48 h) and ErCl₃ (0.295 g, 1.08 mmol). Complex **3b** was isolated as red crystals in 63% yield (0.523 g, 0.69 mmol). Elemental analysis calcd (%) for C₃₄H₅₂Cl₂ErN₂O₂ (758.95 g/mol): C, 53.81; H, 6.91; N, 3.69; Er, 22.04. Found: C, 53.52; H, 7.13; N, 3.87; Er, 22.19. IR (Nujol, KBr): 1585 (s), 1540 (s), 1430 (s), 1360 (s), 1325 (s), 1260 (s), 1230 (s), 1195 (s), 1105 (s), 1055 (s), 1040 (s), 1015 (s), 915 (s), 845 (s), 800 (s), 765 (s), 675 (s), 590 (m), 530 (s), 430 (m) cm⁻¹.

Synthesis of (DAD^{CH₃,CH₂})TbCl₂(THF)₂ (4). Complex **4** was synthesized and isolated analogously to **3a** starting from *in situ* generated (DAD^{2Me})K(THF)_n (DAD^{2Me}: 0.520 g, 1.28 mmol; potassium metal: 0.052 g, 1.28 mmol; THF, rt, 48 h) and TbCl₃ (0.341 g, 1.28 mmol). Complex **4** was isolated as orange red-orange crystals in 66% yield (0.660 g, 0.85 mmol). Elemental analysis calcd (%) for C₃₆H₅₅Cl₂N₂O₂Tb (777.67 g/mol): C, 55.60; H, 7.13; N, 3.60; Tb, 20.44. Found: C, 55.68; H, 7.37; N, 3.52; Tb, 20.27. IR (Nujol, KBr): 1575 (s), 1540 (s), 1365 (s), 1350 (s), 1315 (s), 1240 (s), 1205 (s), 1180 (s), 1150 (s), 1105 (s), 1055 (s), 1015 (s), 985 (s), 960 (s), 940 (s), 920 (s), 890 (s), 865 (s), 850 (s), 825 (m), 805 (s), 790 (s), 745 (s), 700 (s), 665 (s), 590 (m), 525 (m), 435 (m) cm⁻¹.

Figure S1. Molecular structure of complex **3a**. Thermal ellipsoids are given with 30% probability. Hydrogen atoms (except of NC(H)C(H)N fragments) and carbon atoms of coordinated THF and Prⁱ groups of DAD-ligands are omitted for clarity.

Table S1. Crystal Data and Structure Refinement Details for Complexes **1b**, **2**, **3a,b** and **4**.

	1b	2	3b	3a	4
CCDC	2291546	2291547	2291548	2294708	2294709
Empirical formula	C ₆₈ H ₁₀₄ Cl ₂ Er ₂ N ₄ O ₄	C ₇₂ H ₁₁₂ Cl ₂ N ₄ O ₄ Tb ₂ , C ₄ H ₈ O	C ₃₄ H ₅₂ Cl ₂ ErN ₂ O ₂	C ₃₄ H ₅₂ Cl ₂ N ₂ O ₂ Tb	C ₃₆ H ₅₅ Cl ₂ N ₂ O ₂ Tb
Formula weight	1446.97	1558.49	758.93	750.59	777.64
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>Pbca</i>	<i>P2₁/n</i>	<i>P2₁/n</i>	<i>P2₁/n</i>	<i>P2₁</i>
Unit cell dimensions	<i>a</i> = 19.1720(5) Å <i>b</i> = 15.3350(4) Å <i>c</i> = 23.2547(6) Å α = 90° β = 90° γ = 90°	<i>a</i> = 15.3491(4) Å <i>b</i> = 16.0935(4) Å <i>c</i> = 15.7508(4) Å α = 90° β = 108.4270(10)° γ = 90°	<i>a</i> = 10.1072(3) Å <i>b</i> = 19.6768(5) Å <i>c</i> = 18.4890(5) Å α = 90° β = 105.5000(10)° γ = 90°	<i>a</i> = 10.1207(5) Å <i>b</i> = 19.7298(10) Å <i>c</i> = 18.5792(10) Å α = 90° β = 105.3200(10)° γ = 90°	<i>a</i> = 13.7236(16) Å <i>b</i> = 17.421(2) Å <i>c</i> = 15.5119(18) Å α = 90° β = 90.233(2)° γ = 90°
<i>V</i> , Å ³	6836.9(3)	3691.28(16)	3543.31(17)	3578.1(3)	3708.5(7)
<i>Z</i>	4	2	4	4	4
<i>d_{calc}</i> , g/cm ³	1.406	1.402	1.423	1.393	1.393
μ , mm ⁻¹	2.563	2.023	2.549	2.156	2.083
<i>F</i> ₀₀₀	2968	1616	1552	1540	1600
Crystal dimensions, mm	0.19×0.10×0.05	0.25×0.21×0.11	0.29×0.18×0.17	0.32×0.18×0.14	0.32×0.21×0.18
θ range for data collection, °	2.44–30.07	2.57–30.17	2.07–30.10	1.54–30.03	1.31–27.10
HKL indices	$-27 \leq h \leq 27$ $-21 \leq k \leq 21$ $-32 \leq l \leq 32$	$-21 \leq h \leq 21$ $-22 \leq k \leq 22$ $-22 \leq l \leq 22$	$-14 \leq h \leq 12$ $-27 \leq k \leq 27$ $-26 \leq l \leq 23$	$-14 \leq h \leq 14$ $-27 \leq k \leq 27$ $-26 \leq l \leq 26$	$-17 \leq h \leq 17$ $-22 \leq k \leq 22$ $-19 \leq l \leq 19$
Reflns collected	85075	51481	34472	46230	51077
Independent reflns (<i>R</i> _{int})	9965 (0.0587)	10892 (0.0227)	10398 (0.0205)	10463 (0.0335)	51077 (-)
Parameters (restraints)	384 (90)	434 (64)	387 (0)	386 (0)	806 (1)
Completeness to θ , %	99.2	99.7	99.7	100.0	99.4
<i>S</i> (<i>F</i> ²)	1.076	1.043	1.068	1.019	0.988
Final <i>R</i> Indices (<i>I</i> > 2σ(<i>I</i>))	R ₁ = 0.0381 wR ₂ = 0.0666	R ₁ = 0.0219 wR ₂ = 0.0632	R ₁ = 0.0175 wR ₂ = 0.0406	R ₁ = 0.0200 wR ₂ = 0.0426	R ₁ = 0.0341 wR ₂ = 0.0858
<i>R</i> Indices (all data)	R ₁ = 0.0536 wR ₂ = 0.0722	R ₁ = 0.0262 wR ₂ = 0.0552	R ₁ = 0.0198 wR ₂ = 0.0413	R ₁ = 0.0251 wR ₂ = 0.0444	R ₁ = 0.0395 wR ₂ = 0.0891
Largest diff. peak and hole, e/Å ³	1.13 / -1.32	1.04 / -0.95	0.93 / -0.80	0.58 / -0.42	1.05 / -1.00