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1. Experimental Section

'H and C NMR spectra were recorded on a 400 MHz spectrometer Agilent 400-MR (400.0, 100.6
and 376.3 MHz for H, 3C and °F, respectively) at room temperature; chemical shifts & were
measured with reference to the solvent for *H (CDCls, § = 7.26 ppm) and *C (CDCls, & = 77.16
ppm). When necessary, assignments of signals in NMR spectra were made using 2D techniques.
Accurate mass measurements (HRMS) were obtained on Bruker micrOTOF Il mass spectrometer
with electrospray ionization (ESI). Analytical thin layer chromatography was carried out with
silica gel plates (supported on aluminum); the detection was done by UV lamp (254 nm). Column
chromatography was performed on silica gel (Macherey-Nagel, Silica 60, 0.015-0.04 mm).
Compounds 3a,%! 3b,? 3¢, 4a-c,52 5,54 652 and 7°° were obtained as described. All other starting
materials were commercially available. All reagents except commercial products of satisfactory
quality were purified according to literature procedures prior to use.

Synthesis of bis(pyrimidines) 2a—d (general procedure). A mixture of the corresponding 4-
(pyrimidin-4-yloxy)phenol 4a—c or 6 (1.0 mmol) and Cs,COz (652 mg, 2.0 mmol) in absolute
DMF (10 mL) was stirred for 10 min at r.t., under argon. 4-Halogenopyrimidine 5 or 7 (2.0 mmol)
was added. The reaction mixture was stirred at 85 °C for 6 h, allowed to cool down to r.t., quenched
with an equal volume of water and extracted with EtOAc (3 x 10 mL). The combined organic
layers were washed with brine (3 x 10 mL) and dried over MgSOg; the solvent was evaporated
under reduced pressure. The products were isolated via preparative column chromatography
(SiOy).

4-{4-[(2-Methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-yl)oxy]phenoxy}-5,6,7,8-
tetrahydroquinazoline (2a).

Yield 88% (329 mg). White solid, m.p. 163-165 °C, Rf=0.2 (EtOAC).

'H NMR (CDCls, 8, ppm): 1.76-1.91 (m, 4H, C(6)Hz, C(7)H2, THQ), 2.03-2.17 (m, 2H, C®H,, cy-
pent-Pyr), 2.46 (s, 3H, CH3), 2.71-2.76 (m, 2H, C(5)H2, THQ), 2.78-2.83 (m, 2H, C(8)H2, THQ),
2.84-2.89 (m, 2H, C(5)Ha, cy-pent-Pyr), 2.90-2.95 (m, 2H, C(7)H2, cy-pent-Pyr), 7.08-7.17 (m,
4H, 4CH, Ar), 8.42 (s, 1H, CH, THQ);

13C NMR (CDCls, §, ppm): 21.79 (CH,), 21.86 (CH>), 21.92 (CH,), 22.05 (CH), 25.4 (CHs), 26.7
(C(5)Hz, cy-pent-Pyr), 31.8 (C(8)H2, THQ), 34.2 (C(7)H., cy-pent-Pyr), 117.2 (C(4a), cy-pent-
Pyr), 117.4 (C(4a), THQ), 122.67 (2CH, Ar), 122.71 (2CH, Ar), 149.5 (C, Ar), 149.8 (C, Ar),
154.6 (CH, THQ), 165.1 (C), 166.7 (C), 166.9 (C), 167.1 (C), 176.8 (C(7a), cy-pent-Pyr).

HRMS (ESI*, m/z): calcd. for C22H22N4O, [M+H]* 375.1816, found 375.1814.
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2-Methyl-4-{4-[(5,6,7,8-tetrahydroquinazolin-4-yl)oxy]phenoxy}-5,6,7,8-
tetrahydroquinazoline (2b).

Yield 64% (248 mg). White solid, m.p. 156-158 °C, Rt = 0.2 (EtOAC).

'H NMR (CDCls, §, ppm): 1.74-1.96 (m, 8H, 4CH>), 2.43 (s, 3H, CH3), 2.66-2.71 (m, 2H, CH>),
2.73-2.80 (m, 4H, 2CH>), 2.81-2.86 (m, 2H, CH2), 7.05-7.24 (m, 4H, 4CH, Ar), 8.46 (s, 1H, CH,
THQ);

13C NMR (CDCls, §, ppm): 21.7 (CHy), 21.9 (CH2), 22.0 (CHy), 22.1 (CHy), 22.2 (CH>), 22.3
(CHy), 25.5 (CH3), 31.9 (2CH>), 114.0 (C, THQ), 117.5 (C, THQ), 122.6 (2CH, Ar), 122.7 (2CH,
Ar), 149.4 (C, Ar), 150.1 (C, Ar), 154.8 (CH, THQ), 164.1 (C, THQ), 166.7 (C, THQ), 166.83 (C,
THQ), 166.88 (C, THQ), 167.2 (C, THQ).

HRMS (ESI*, m/z): calcd. for C23H24N4O2 [M+H]* 389.1972, found 389.1974.
2-Methyl-4-{4-[(5,6,7,8-tetrahydroquinazolin-4-yl)oxy]phenoxy}-6,7,8,9-tetrahydro-5H-
cyclohepta[d]pyrimidine (2c)

Yield 46% (185 mg). White solid, m.p. 206-207 °C, R¢ = 0.1 (petroleum ether — EtOAc 1:2).

'H NMR (CDCls, 8, ppm): 1.59-1.76 (m, 4H, 2CH>, cy-hept-Pyr), 1.81-1.96 (m, 6H, 2CH,, THQ
+ CHa, cy-hept-Pyr), 2.45 (s, 3H, CH3), 2.71-2.81 (m, 2H, CH>, THQ), 2.82-2.87 (m, 2H, CHa,
THQ), 2.87-2.92 (m, 2H, CHa, cy-hept-Pyr), 2.93-2.98 (m, 2H, CHa, cy-hept-Pyr), 7.08-7.22 (m,
4H, 4CH, Ar), 8.48 (s, 1H, CH, THQ);

13C NMR (CDCls, 8, ppm): 21.95 (CHz, THQ), 22.02 (CH2, THQ), 22.2 (CH2, THQ), 24.5 (CH_,
cy-hept-Pyr), 25.6 (CHz3), 25.9 (CHa, cy-hept-Pyr), 27.1 (CH>, cy-hept-Pyr), 32.0 (CH2, THQ),
32.5 (CHz, cy-hept-Pyr), 38.7 (CH>, cy-hept-Pyr), 117.5 (C(4a), THQ), 119.0 (C(4a), cy-hept-Pyr),
122.5 (2CH, Ar), 122.7 (2CH, Ar), 149.3 (C, Ar), 150.7 (C, Ar), 154.4 (CH, THQ), 164.4 (C(2),
cy-hept-Pyr), 166.1 (C(4), cy-hept-Pyr), 166.9 (C, THQ), 167.2 (C, THQ), 173.1 (C(9a), cy-hept-
Pyr).

HRMS (ESI*, m/z): calcd. for C2saH26N4O2 [M+H]" 403.2129, found 403.2127.
4-{4-[(6-tert-Butyl-2-methylpyrimidin-4-yl)oxy]phenoxy}-5,6,7,8-tetrahydroquinazoline
(2d).

Yield 84% (327 mg). White solid, m.p. 141-144 °C, Rf = 0.5 (petroleum ether — EtOAc 1:1).

'H NMR (CDCls, 8, ppm): 1.30 (s, 9H, 3CHs, t-Bu), 1.85-1.95 (m, 4H, C(6)H2, C(7)H.), 2.55 (s,
3H, CHs, Pyr), 2.77-2.82 (m, 2H, C(5)H>), 2.84-2.90 (m, 2H, C(8)H>), 6.63 (s, 1H, CH, Pyr), 7.16-
7.21 (m, 4H, 4CH, Ar), 8.49 (s, 1H, CH, THQ).

13C NMR (CDCls, 8, ppm): 21.96 (CHy), 22.04 (CHy), 22.2 (CHy), 26.2 (CHa, Pyr), 29.4 (3CHs,
t-Bu), 32.0 (C(8)H2), 37.6 (C, t-Bu), 99.6 (CH, Pyr), 117.6 (C(4a), THQ), 122.7 (2CH, Ar), 122.9
(2CH, Ar), 149.7 (C, Ar), 150.0 (C, Ar), 154.9 (CH, THQ), 167.06 (C, THQ), 167.14 (C, THQ),
167.7 (C(2), Pyr), 170.0 (C(4), Pyr), 180.3 (C(6), Pyr).

HRMS (ESI*, m/z): calcd. for C23H26N4O2 [M+H]* 391.2129, found 391.2132.
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3. Copies of NMR spectra
H NMR spectrum (CDCls) of compound 2a
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13C NMR spectrum (CDCIs) of compound 2a
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HSQC NMR spectrum (CDCIs) of compound 2a
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HMBC NMR spectrum (CDCIs) of compound 2a
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'H NMR spectrum (CDCIs) of compound 2b
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13C NMR spectrum (CDCIs) of compound 2b
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HSQC NMR spectrum (CDCIs) of compound 2b

B TN
"
T
-
U~

_J o

] 4

-
7z

KEREEREE

F1 Chemical Shift (ppm)

2

I

-
=
N

g
8

¢

I,
| i
d 8 @

g

4
I

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15

S11



HMBC NMR spectrum (CDCIs) of compound 2b

]

A

o—<3%4

SN

LA

N

CH,

N

N

N

i

KT

-|nu|ms;|uu|m
4l
00|

b4

B W
e

K

F1 Chemical Shift (ppm)

2

-
|
M)

8

=
[
Qo)

8

i

T
ey
o)
N

u|m |I||u‘

3

.

E 176

””8.5;”

65

ARRS L
6.0

55 50
F2 Chemical Shift (ppm)

45

S12



'H NMR spectrum (CDCIls) of compound 2¢c
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13C NMR spectrum (CDCIs) of compound 2¢
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HSQC NMR spectrum (CDCIs) of compound 2c
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HMBC NMR spectrum (CDCIs) of compound 2c
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'H NMR spectrum (CDClIs) of compound 2d
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13C NMR spectrum (CDCIs) of compound 2d
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HSQC NMR spectrum (CDCIs) of compound 2d
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HMBC NMR spectrum (CDCIs) of compound 2d
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Figure S1. RMSD plots of the protein, glutamate, and ligand heavy atoms for compounds 2a—d during molecular dynamics simulations of the modulator
complex with the dimeric ligand binding domain of the GluA2 AMPA receptor (RMSD, A; Time, ns).
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Figure S2. Binding modes of compounds 2a—d in the PAM binding site refined using molecular dynamics simulations (100 ns). For each compound, a
general view of the dimeric ligand binding domain of AMPA receptor (GluA2) and the ligand position are shown.
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