


**Application of the  $^{121}\text{Sb}$  Mössbauer spectroscopy to characterizing titania-based photocatalysts modified by lone pair cations**

**Mikhail V. Korolenko, Pavel B. Fabritchnyi and Mikhail I. Afanasov**

Routine X-Ray Diffraction measurements were performed on a powder sample ARL X'TRA Thermo Scientific diffractometer using Cu  $K\alpha$  radiation (wavelength  $\lambda = 1.5418 \text{ \AA}$ ). All studied catalysts were found to be anatase type (space group  $I4_1/amd$ ) single-phase polycrystalline materials. As an example, Figure S1 shows the X-ray diffraction pattern of catalyst (2 at %  $\text{Sb}^{\text{III}}\downarrow/\alpha\text{-TiO}_2$ ). Their specific surface area  $S_{\text{BET}}$  determined by the BET method was found to be 56–58  $\text{m}^2 \text{ g}^{-1}$  and virtually not affected by the presence of the dopant used.



**Figure S1.** XRD pattern of catalyst 2 at %  $\text{Sb}^{\text{III}}\downarrow/\alpha\text{-TiO}_2$

$^{121}\text{Sb}$  Mössbauer spectra were recorded on a MS-1104 spectrometer and analyzed by a least-square fitting program. To perform  $^{121}\text{Sb}$  Mössbauer spectroscopic measurements the 8.5 keV escape peak, produced by Mössbauer gamma rays ( $E_\gamma = 37.15$  keV) in a thin NaI(Tl) scintillator, was used. During the measurements both Ca $^{121}\text{SnO}_3$  source and studied powder sample (absorber) were introduced into the hole of a copper bar immersed in a Dewar flask filled with liquid nitrogen. Under these conditions, the temperature of absorber was close to 100 K and thus allowed us to consider the spectral contributions of the eventually present chemically different species of antimony as an acceptable estimate of their abundances.