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The chromane moiety is a structural component of many natural 
molecules, including vitamin E and flavonoids, which possess a 
wide spectrum of biological activity.1 Many of the synthetic and 
semi-synthetic flavonoids are promising biologically active 
compounds with antitumor,2,3 antiviral4 (including anti-HIV5), 
antibacterial,6,7 antifungal,6 and antiparasitic activities.5,8 
Structural analogs of flavonoids with antidepressant9 and anti-
inflammatory10 effects as well as anti-diabetic activity are also 
known.11 A significant number of therapeutic agents contain a 
structural fragment of chromane.12 

Here we report a facile one-pot synthesis of 2-(2-hydroxyaryl)-
2,2,4-trimethylchromanes based on the reaction of 1-(2-hydroxy
aryl)ethanones with methylmagnesium iodide. Initially, during 
the attempted synthesis of 2-isopropenylphenol 1a by the 
previously described method13 (based on the reaction of 
2-hydroxyacetophenone 2a with methylmagnesium iodide with 
subsequent dehydration of the resulting carbinol 3a, Scheme 1), 
we anticipated to modify this method by carrying out the 
dehydration of 3a directly during the hydrolysis of the reaction 
mixture with 20% sulfuric acid.14 Unexpectedly, the reaction 
afforded exclusively 2-(2,4,4-trimethylchroman-2-yl)phenol 4a. 

After the separation of the aqueous layer and removal of the 
solvent, the residue was essentially pure compound 4a. 

Alternatively, a mixture of chromane 4a and 2-isopropenyl
phenol 1a is obtained when hydrochloric acid is used for 
hydrolysis instead of 20% sulfuric acid. Meanwhile, (2-hydroxy
phenyl)dimethylcarbinol 3a can be obtained by using aqueous 
ammonium chloride for quenching the reaction mixture. The 
synthesis of compound 4a using the acid-catalyzed reaction 
between compounds 1a and 3a with yields up to 60–70% has 
been described previously.15–17 

We further extended this method to other available 
1-(2-hydroxyaryl)ethanones 2b,c and isolated the corresponding 
chromanes 4b,c in over 80% yield (see Scheme 1). It should be 
noted that a small amount of unreacted dihydroxyacetophenone 
2c is also present in the reaction mixture formed for compound 
4c. Incomplete conversion for 4c is apparently due to the low 
solubility of intermediate magnesium phenolates in the reaction 
mixture. Compound 4c was previously synthesized by the 
condensation of resorcinol with acetone in 87% yield.18 The 
structure of compounds 4a–c was determined by 1H and 
13C NMR spectroscopy (broadband and DEPT experiments). 
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A one-pot synthesis of 2-(2-hydroxyaryl)-2,4,4-trimethyl
chromanes in near quantitative yields is based on the reaction 
of 1-(2-hydroxyaryl)ethanones with methylmagnesium 
iodide followed by treatment with dilute sulfuric acid. The 
structure of 2-(2-hydroxyphenyl)-2,4,4-trimethylchromane 
is confirmed by X-ray diffraction.
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Scheme  1  Reagents and conditions: i, MeMgI (3 equiv.) Et2O, D; ii, 20% H2SO4, 23 °C, 30 min.
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The structure of compound 4a was ultimately established by 
X-ray diffraction (Figure 1).† Its molecule contains a flat 
[± 0.006(1) Å] eight-atom fragment O1C4AC4aC8A, of which the 
C2 and C3 atoms are bent in opposite directions by different 
distances [0.464(2) and –0.209(2) Å]. This indicates that the 
conformation of the six-membered heterocycle of the half-chair 
type is realised. The hydroxyphenyl substituent is located in the 
axial position. The C10 atom is deviated from the plane by 
1.993(2) Å. The methyl group at the C2 atom is located in 
the  equatorial position: the C9 atom is deviated from the 
O1C4AC4C8A plane by a small distance of –0.043(2) Å. It is 
interesting to note that the methyl groups at the C4 atom differ in 
position to a lesser extent [C16H3 is in the axial position, its 
deviation from the plane O1C4AC4–8C8A is 1.317(2) Å; C17H3 is 
in the equatorial position, its deviation from the plane 
O1C4AC4–8C8A is –1.177(2) Å].

The hydrogen bonding of the hydroxy group with the oxygen 
atom of the heterocycle of the neighboring molecule is the main 
determinant of the packing of the molecules in the crystal of 
compound 4a (Figure 2). The bond parameters are O11–H 
0.95(2), O11···O1' (–1/2 + x, y, 1/2 – z) 2.872(2), H···O1' 0.94(3) Å, 
and angle O11–H···O1' 170(2)°, i.e., the hydrogen bond is rather 
strong. Due to these hydrogen bonds in the crystal, endless 
zigzag chains of molecules are formed along the 0a axis of the 

cell. No intermolecular contacts are observed. These would 
correspond to stacking interactions between aromatic rings.

The possible pathway for the formation of the chromanes is 
outlined in Scheme 2 on the example of compound 4a. It may 
involve the initial dehydration of carbinols 3 to 2-isopropenyl
phenols 1. Such compounds are known to exist in equilibrium 
with tautomeric ortho-quinone methides of type 5a.26 The latter 
would further undergo [4+2]-cycloaddition at the olefinic part of 
1,27 which finally leads to chromanes 4 (see Scheme 2).

In conclusion, we have developed a simple and efficient one-
pot synthesis of 2-(2-hydroxyaryl)-2,4,4-trimethylchromanes in 
near quantitative yields. The synthesis is based on the reaction of 
1-(2-hydroxyaryl)ethanones with methylmagnesium iodide 
followed by treatment with dilute sulfuric acid. Resulting 
chromanes 4a–c may be of interest for medicinal chemistry as 
they are essentially synthetic flavonoids and may be expected to 
possess a broad spectrum of biological activity.
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Figure  1  Geometry of molecule 4a in the crystal. Anisotropic displacement 
ellipsoids are shown with a 50% probability. The selected bond length (Å) 
and bond and torsion angles (°) are: O1–C2 1.465(2), O1–C8A 1.394(2), C2–
C3 1.515(2), C3–C4 1.538(3), C4–C4A 1.505(3), C4A–C8A 1.374(3), C2–O1–
C8A 117.0(1), C3–C4–C4A 109.0(2), C2–C3–C4 116.6(2), C9–C2–C10 
110.6(1), C8A–O1–C2–C3 –46.8(2), C8A–O1–C2–C9 –164.1(1), C8A–O1–C2–
C10 78.3(2), and O1–C2–C3–C4 56.8(2).
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Figure  2  System of hydrogen bonds in molecule 4a.
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