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component.22 In this complex, Pd and Ag atoms are strongly 
linked by acetate bridges to ensure close vicinity between these 
atoms during catalyst synthesis.23 The 0.06 wt% Pd−0.12 wt% 
Ag/Al2O3 SAA catalyst was prepared. Monometallic 0.06 wt% 
Pd/Al2O3 catalyst was used as a reference sample. The egg-shell 
structure was attained by the preliminary acetic acid treatment of 
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EDS, XPS, TEM, and DRIFTS CO (see Online Supplementary 
Materials for experimental details).
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Figure 1 FESEM-EDS study of the Pd1Ag catalyst to prove egg-shell 
distribution of the active component: (a) EDS-line scan along a red line in 
(b) the FESEM image of a PdAg pellet cross section.
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scan along a red line in the FESEM image of a PdAg pellet 
cross section (layer from the surface to a depth of 25 μm). 
Signals of Pd-Lα and Ag-Lα specific X-ray lines changed in 
parallel to indicate that both metals were deposited within a 
near-surface region of an alumina granule in the close vicinity to 
each other. The EDS signal intensities were significantly higher 
in a shell layer of 8 μm than those in the inner layer due to the 
formation of egg-shell bimetallic catalysts.

The egg-shell structure was confirmed by X-ray photoelectron 
spectroscopy (Figure 2). The spectra were recorded from the 
outer surface of intact catalyst pellets, clearly showing that Pd and 
Ag were concentrated in the outer layer. The surface Pd/Al atomic 
ratios determined by XPS were 2.83 × 10–2 and 5.68 × 10–2  
for Pd and Pd1Ag samples, respectively; they are about two 
orders of magnitude higher than the value for a bulk composition 
(3.83 × 10–4, Table S1). Note that, if the catalyst granules were 
destroyed and XPS spectra were taken from the obtained powder, 
the intensity of the Pd3d and Ag3d signals became below the 
instrumental detection limit. This fact shows that the main 
portion of Pd was concentrated in the shell of a catalyst granule.

The XPS spectra also confirmed the PdAg alloy formation. 
Figure 2 shows the Pd3d spectra of the Pd and PdAg samples. 
The Pd3d5/2 component with a binding energy of 335.1 eV was 
attributed to metallic palladium in the Pd catalyst. The binding 
energy of the Pd3d5/2 peak for the bimetallic PdAg catalyst was 
334.8 eV, that is, shifted by 0.3 eV to lower energy with respect 
to that in the monometallic Pd sample. According to published 
data,24–26 this typical shift indicates the formation of bimetallic 
PdAg alloyed nanoparticles by electron transfer from Ag to Pd. 
The calculated Ag : Pd surface atomic ratio (~3.1) is above the 
nominal 2 : 1 stoichiometry of the PdAg2 catalyst due to the 
surface enrichment of PdAg nanoparticles in Ag. This is typical 
for Pd–Ag alloy nanoparticles27,28 and consistent with the results 
of theoretical calculations indicating Ag surface segregation due 
to the formation of a more thermodynamically stable system.29,30

The Pd1Ag SAA structure formation was evidenced by 
DRIFT spectra of adsorbed CO after in situ oxidative–reductive 
treatment (Figure 3). The DRIFT CO spectrum of the 
monometallic Pd catalyst exhibited an intense broad absorption 
band at 1985 cm–1 with a shoulder at ~1940 cm–1. This peak was 
attributed to bridged CO on multiatomic Pdn sites, while the 
shoulder was due to bridged CO adsorbed on large planes of 

palladium nanoparticles.31 A symmetric absorption band at  
2094 cm–1 was attributed to CO linearly adsorbed on Pd(111) 
faces or surface defect sites (edges, corners, etc.).32

The spectrum of the in situ freshly reduced bimetallic Pd1Ag 
catalyst showed intense signal at 2049 cm–1 assigned to CO 
molecules linearly adsorbed on the top of Pd atoms surrounded 
by Ag atoms. The absorption band maximum was shifted by  
45 cm–1 towards lower wavenumbers as a result of electronic 
interaction between palladium and silver due to the formation of 
a solid solution. The bathochromic shift can be explained by the 
absence of dipole–dipole interaction between adsorbed CO 
molecules and the electronic effects induced by silver. A weak 
shoulder at 2086 cm–1 was assigned to linear CO adsorbed on  
the bimetallic Pd–Ag particles depleted with Ag.  
A small peak at 1960–1950 cm–1 was ascribed to bridged CO on 
Pd2 sites. This peak resulted from the formation of an insignificant 
amount of Ag-depleted PdAg particles after the decomposition 
of the PdAg2(OAc)4(HOAc)4 complex upon reductive treatment. 
An extremely low intensity of this signal indicates an almost 
complete absence of multiatomic Pdn (n ³ 2) sites in the egg-
shell catalyst and the predominance of Pd1 sites isolated by 
Ag.13–15

The catalytic performances of Pd1Ag and reference 
monometallic Pd samples were compared in selective acetylene 
hydrogenation. Note that all catalysts were treated in an air flow 
(500 °C, 90 min) and then in a flow of 5 wt% H2/Ar (500 °C, 1.5 h) 
before catalytic tests. In these comparative tests, the catalyst 
loads were 150 and 300 mg for the Pd and Pd1Ag samples, 
respectively. Figure 4(a) shows the temperature dependence of 
C2H2 conversion. Since the activity of Pd1Ag SAA is slightly 
lower than that of the monometallic Pd sample, the loaded 
catalyst amounts were adjusted to obtain identical acetylene 
conversion–reaction temperature dependences. Therefore, the 
selectivities were compared at identical acetylene conversion 
and temperature. For better comparability, the catalyst activity 
was normalized by the amount of Pd (Table S2). The catalytic 
activity of Pd1Ag decreased by a factor of 1.7 from 0.071 to 
0.042 mmol–1

C2H2
 mgPd

–1 min–1 compared to the Pd counterpart. 
Note that Ag significantly improved the selectivity for 

ethylene, especially at high acetylene conversions. At low 
acetylene conversions, selectivity reached ~96 and ~93% on 
Pd1Ag and Pd, respectively, and remained almost constant up to 
an acetylene conversion of 60%. As the acetylene conversion 
increased, the selectivity rapidly dropped to ~60% at a C2H2 
conversion of 90% on monometallic Pd. On the other hand, the 
selectivity of the Pd1Ag SAA catalyst for ethylene was as high as 
90.2%. Presumably, this catalytic behavior was due to the 
predominance of Pd1 single-atom sites isolated from each other Figure 2 Pd3d XPS spectra of Pd1Ag and reference Pd egg-shell catalysts.
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Figure 3 Normalized DRIFT spectra of CO adsorbed on (a) monometallic 
Pd and (b) Pd1Ag catalysts.
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by Ag atoms and the absence of multiatomic Pdn ensembles  
(n ³ 2), as evidenced by DRIFT CO. The structure of active sites 
allowed ethylene adsorption only as weakly p-bonded species, 
thus facilitating ethylene desorption and improving the catalyst 
selectivity for ethylene.

Thus, the use of the PdAg2(OAc)4(HOAc)4 complex as a 
precursor allowed us to prepare Pd1Ag catalysts with an egg-
shell distribution of the active component, which was evidenced 
by FESEM-EDS data. The formation of a PdAg alloy was 
verified by XPS analysis. According to DRIFTS-CO results, the 
structure of active sites corresponded to the single-atom alloy. In 
acetylene hydrogenation, the Pd1Ag/Al2O3 egg-shell catalyst 
exhibited excellent selectivity for ethylene formation, and it can 
be considered as a promising catalytic system for practical 
implementation.
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Figure  4  Catalytic performance of Pd1Ag SAA and reference Pd egg-shell 
catalysts in acetylene hydrogenation: (a) the temperature dependence of 
C2H2 conversion and (b) the selectivity for C2H4 as a function of C2H2 
conversion. Catalysts loadings: Pd1Ag, 300 mg and Pd, 150 mg.

0

20

40

60

80

100

25 40 70 8555 
Temperature/°C

C
2H

2

0

20

40

60

80

100

0 20 80 10040 60
C2H2 (%)

C
2H

4
 

Pd1Ag

Pd

Pd1Ag

Pd

 conversion

 s
el

ec
tiv

ity
 (

%
)

 c
on

ve
rs

io
n 

(%
)

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)




