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Based both on the practice of post-processing by a human
expert and on the higher values of the accuracy metrics of
machine learning scoring functions, it is suggested that when
estimating the free energy of binding in a ligand-receptor
complex, a significant part of intermolecular interactions is
still not explicitly taken into account. An assessment is made
of how explicit consideration of non-complementary ligand-
receptor interactions could improve the accuracy of the
description of contemporary classical scoring functions, which
tend to use only terms of complementary/favorable interactions.
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Current drug discovery is a very complex and risky process,
involving multifactor optimization and numerous cross-functional
studies. Computer-aided drug discovery helps simplify the
discovery process and reduce some of the risks.m2 Once the
structure of a drug target is well defined, it is often used in
conjunction with a set of structure-based drug discovery tools.
Perhaps the most widely used in hit finding and hit-to-lead processes
is virtual screening using molecular docking, in which the most
plausible binding modes, as well as free energy estimations, are
performed in silico on large libraries of potential ligands. Fast
estimation of the free energy of ligand-receptor affinity during
docking is carried out using scoring functions (SFs). Currently,
four types of SFs have been proposed, namely physics (force
field) based SFs, empirical SFs, knowledge based SFs and
machine learning based SFs.34

SFs are ubiquitously and successfully used in numerous drug
development projects.> By design, SFs are a very rough
approximation of the free energy of binding of a ligand to a
receptor at a particular ligand—receptor position, their main
advantage is that SFs enable structure-based virtual screening,
used in the early stages of drug discovery to narrow down the
number of structures studied subsequently. The downside of the
roughness and high throughput of SFs is the need for post-
processing of the initial results using other techniques® and the
involvement of expert visual inspection.” The fact that a human
expert can rule out unnatural and unlikely binding modes suggests
that there must be quite significant criteria for the quality of a
binding mode that are currently still beyond the consideration of
contemporary classical SFs. Additionally, a recent class of machine
learning SFs have been able to overcome the accuracy limit
previously achieved by classical SFs,®? although there is still
reasonable doubt that at least part of the success may be due to
overfitting.1%13 We hypothesize that one of the strong assumptions
in the SFs is that currently only favorable interactions are generally
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considered. In this regard, given the multiple possible interactions,
human expert visual inspection and machine learning SFs can go
beyond the ‘favorable interactions only’ pattern. To the best of
our knowledge, there has been no systematic study of the usefulness
of including unfavorable or non-complementary interactions.
The only exception is the work describing the parameterization
of such SF as ScorpionScore,'* in which mismatched interactions
were explicitly taken into account, but with little discussion and
generalization.

The most common types of specific intermolecular interactions'®
considered in SFs are hydrophobic (HYD) interactions and
hydrogen bonding, which are believed to constitute the major
part of drug-like ligand—-receptor interactions.® Naturally, HYD
ligand—HYD receptor interactions favorably influence the score,
as do hydrogen bonding interactions in complementary donor
(DON) ligand-acceptor (ACC) receptor and ACC ligand-DON
receptor pairs. Thus, complementary ligand—receptor interactions
include those designated as Lig(HYD)-Rec(HYD), Lig(ACC)-
Rec(DON) and Lig(DON)-Rec(ACC).

This work aims to explore the extent to which explicit
consideration of non-complementary ligand—receptor interactions
may play a role in better characterizing ligand-receptor interactions.
Therefore, we specifically investigated how explicitly accounting
for non-complementary interactions, such as Lig(HYD)-Rec(DON),
Lig(HYD)-Rec(ACC), Lig(ACC)-Rec(HYD), Lig(DON)-
Rec(HYD), Lig(DON)-Rec(DON) and Lig(ACC)-Rec(ACC),
helps to describe the experimental free energy of ligand—-receptor
interactions.

To this end, CASF-2016 Update,*” a well-established benchmark
for evaluating SFs and the core set of the PDBBind database, 810
is used as a source of reference free energy. The complementary
and non-complementary contact surfaces, called Contact Surface
Areas (CSAs), are used as descriptors to build linear regularized
models (LASSO?) in order to qualitatively and quantitatively
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Figure 1 Distribution of the main characteristics of complexes with ligands having the lowest (Q1) and highest (Q4) LE values: (a) CSA[HYD+HYD],

(b) CSA[DON+ACC], (c) CSA[ACC+DON], (d) pKyq, (€) logP and (f) LLE.

interpret the obtained results. LASSO models include a
regularization coefficient A, larger values of which lead to zeroing
out the contribution of less significant descriptors to the model.

Hereinafter, ‘CSA[lig_type+prot_type]” denotes the contact
area between ligand atoms, which have the ‘lig_type’ atomic
type, and protein atoms, which have the “prot_type’ atomic type.

At the first stage of the research, we analyzed the distribution
of complementary and non-complementary contact areas of the
ligands.

The CASF-2016 core set was chosen as a standard and
reliable source of both experimental 3D structures and binding
affinities.’” Because of its certain bias towards generally well-
known and favorable complexes, the number of non-complementary
contacts is a priori expected to be low, so we decided to test this
hypothesis explicitly. The complexes were divided into quartiles
according to the ligand efficiency (LE) value, which is a measure
of the binding affinity per heavy (non-hydrogen) atom. It was
calculated as the negative decimal logarithm of the inhibition
constant (pK;) divided by the number of heavy atoms. The first
quartile (Q1) contained 72 ligands with low 25% LE values, and
the fourth quartile (Q4) contained 71 ligands with high 25% LE

values, which means that Q4 ligands are quite more optimal than
Q1 ones.

The idea of dividing a set of molecules was to outline the
dissimilarities between its parts in a simple and intuitive way.
In this particular case, it was assumed that the low LE (and hence
lower density per atom, pK;y) of ligands in Q1 is a direct
consequence of the much more frequent presence of non-optimal
(i.e,, non-complementary) contacts compared to highly optimized
ligands with high LE values in Q4. Thus, by comparing the
distinct characteristics of the two subsets, we could see more
clearly the importance of the explicit account of such contacts
within the SF.

We first compared the CSA values for the complementary
contacts (Figure 1).

The average CSA of the complementary contacts for Q1
ligands is higher than for Q4 ligands, but the average binding
affinity (pKjq) is much higher for Q4 ligands. It seems that Q1
ligands are generally more lipophilic, potentially hampering their
ADMET properties.?! Accordingly, lipophilic ligand efficiency
(LLE),?! balancing affinity and lipophilicity, is also higher for
Q4 ligands in general and above the recommended threshold
value of 5-6.2 It can be assumed that the higher the complementary
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Figure 2 Distribution of CSA values of the non-complementary contacts in complexes with ligands having the lowest (Q1) and highest (Q4) LE values:
(a) CSA[HYD+DON], (b) CSA[HYD+ACC], (c) CSA[DON+DON], (d) CSA[DON+HYD], (€) CSA[ACC+HYD] and (f) CSA[ACC+ACC].
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CSA, the lower the binding constant (i.e., the weaker the binding),
which is contrary to common sense and the practice of chemists.”
This suggests that another source of correction, presumably a
non-complementary CSA (Figure 2), is needed.

However, the CSA of non-complementary contacts is also
larger on average for Q1 ligands with low LE. It is assumed that
such contacts are energetically unfavorable and must be compensated
for by favorable contacts, thereby degrading the resulting binding
energy. This means that they should be taken into account in the
model describing binding energy.

At the second stage, we test the hypothesis about the
importance of explicitly taking into account non-complementary
contacts. To this end, we build several regression models that
reproduce the reference experimentally measured binding free
energy.

The first model only considers complementary contacts, such
as CSA[HYD+HYD], CSA[DON+ACC] and CSA[ACC+DON].
The model was tested separately for Q1 and Q4 ligands. All
descriptor values were normalized to range from 0 to 1, so b in
equation (1) can be viewed as the minimum possible predicted
value of AG on the set. At the same time, the value of b at high
regularization coefficients (i.e., when w; = 0) can be considered
as the average AG on the set.

AG,;,g == RTInK,; = b+ Z w,CSA,

CSA, € {CSA[HYD + HYD],CSA[DON + ACC],
CSA[ACC + DONT}, 1)

where AGy;q is the binding free energy, R is the molar gas
constant, T is the absolute temperature, K;, is the inhibition/
dissociation constant, CSA,; is the CSA of the specific type, w; is
the fitted regression coefficient, and b is the fitted intercept value.

First, it can be seen (Figure S1, see Online Supplementary
Materials) that HYD interactions make the largest contribution
in terms of binding affinity (energy). In addition, Lig(DON)-
Rec(ACC) and Lig(ACC)-Rec(DON) interactions have the
same statistical weight and make a comparable contribution to
the binding free energy value. Both types of interactions are
considered favorable in the regression model, with a
significantly larger contribution from HYD interactions
compared to hydrogen bonding interactions. The latter is
explained by both enthalpy and entropy contributions.1®
Overall, these observations are consistent with generally
accepted knowledge in the field of medicinal chemistry,®
which confirms the validity of the model.

Second, it should be noted that the R? value in the scoring test
for both ligands Q1 and Q4 corresponds to the range of R? values
obtained in the CASF-2016 benchmark!” for a diverse set of
practically used SFs, which further confirms the validity and
reasonableness of CSA as means of estimating the interaction
measure.

Third, there is a significant difference between ligands Q1 and
Q4. The baseline b (minimum and average predicted AG values)
is significantly larger for Q4 ligands. The total contribution of
HYD contacts is slightly less for Q4 ligands, while DON-ACC
contacts are at the same level for both Q1 and Q4. In addition,
the prediction quality (R%, MAE and RMSD) for Q4 complexes
is drastically worse, meaning that there is a significant difference
between the binding modes in these quartiles. One might
speculate that the current model based only on complementary
contacts is not sufficient to capture all kinds of valuable interactions
involved in binding, and non-complementary contacts could be
included as a correction. However, this discrepancy between
predicted and experimental energies may also be related to the
unavoidable uncertainties in the experimental data (e.g., imprecise

3D geometries and chemical structures, missing water-mediated
interactions and entropy contribution), as well as due to the
crude SF approximation that associates a single protein—ligand
conformation to an experimental value of binding affinity, which
in practice reflects the affinity of the conformational ensemble.
Next, we test only the first assumption about the importance of
non-complementary contacts.

In the second model, in addition to complementary contacts,
non-complementary polar—-HY D contacts are taken into account.
DON-DON and ACC-ACC contacts were excluded from the
model due to their purely electrostatic nature, in contrast to
polar-HYD contacts.

Compared to the model that only considers complementary
contacts (see Figure S1), the model that additionally considers
non-complementary contacts (Figure S2) performs numerically
better (Table 1) in terms of R2, MAE and RMSD for both Q1 and
Q4 complexes. However, the reduction in residual error (both
MAE and RMSD) is an order of magnitude lower than the
residual error itself.

It is also clear from Figure S2 that the quality of the extended
model for Q4 ligands is still noticeably worse than the quality of
the model for Q1, which means that there are certain energetic
terms that have yet to be taken into account but are not observed
in the current model. An additional experiment taking into
account all types of atoms not included in the previous definitions
(denoted by the atomic type ‘OTH’) unexpectedly leads to a
significant improvement in the statistics of the produced linear
models (Table S3, see Online Supplementary Materials), especially
for the Q4 part of the set (R®=0.71, MAE=1.19 and
RMSD =1.42). The latter means that seemingly important
interactions, and possibly their cooperativity, are currently not
accounted for in contemporary classical SFs, and also provides
an additional explanation for the relative success of the machine
learning SFs. However, it should be noted that inclusion of all
ligand and receptor atom type pairs as well as ‘OTH? effectively
results in doubling the number of CSA descriptors.

However, this minor numerical improvement comes at the
cost of a loss of qualitative interpretability (and potentially practical
applicability). For example, the contacts Lig(DON)-Rec(ACC)
are considered unfavorable in this model (see Figures S2), while
the contacts Lig(ACC)-Rec(DON) retain their favorability,
unlike what we saw before (see Figure S1). At the same time, the
interaction energy of polar—HYD contacts, which also includes
uncompensated desolvation of polar parts, is very favorable.

The reason is the highly linearly correlated CSA values
between different protein atom types and a single ligand atom
type (see Table S3). The correlation itself is due to the peculiarities
of the binding site pockets, which are heterogeneous and contain
closely spaced atoms of different types. This means that the ligand
inevitably forms both complementary and non-complementary
contacts with the protein.

All of the above leads us to the conclusion that non-
complementary contacts at this level of detail do not fulfill the
expected role of a counterweight to complementary contacts and
their explicit consideration does not take SF predictions to a

Table 1 Statistical metrics (in scoring power test) of different linear
regression models aimed at reproducing binding free energy.

-1 -1
Ligand-receptor R? MAE/kcal mol~ RMSD/kcal mol
interactions 01 Q4 01 Q4 01 Q4
Complementary only 0.60 033 129 181 1.66 2.14
Complementary + 0.71 046 1.09 1.61 142 1.93

non-complementary
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qualitatively new level. Moreover, due to the high degree of
linear correlation between complementary and non-complementary
CSAs (see Table S3), they are already implicitly taken into
account by most existing SFs. Another point is that the current
model does not include any terms that are shown to be unfavorable
in terms of contribution to binding energy. However, the process
of binding and formation of ligand—protein contacts is always
accompanied, e.g., by the loss of ligand—water and protein—water
contacts (a penalty for desolvation), which is not taken into account by
the current model and is rarely taken into account by empirical SFs.

Returning to what an experienced medicinal chemist might
see beyond the predictions of current SFs, several conclusions
can be drawn. First, the dominant and highly robust factor that is
crucial for ligand-receptor interactions is the combination of
shape complementarity?? and HYD interactions,'> which are both
accounted for by CSA[HYD+HYD]. This fits well with both
existing theory and practice of medicinal chemistry. These types
of interactions have been consistently used in almost all known
SFs,1517.23 which are in good agreement with the occurrence of
close contacts in experimental structures.®

Second, the role of contact complementarity in terms of contact
types is, somewhat surprisingly, not as important as might be
expected, at least in the context of free energy predictions for
relatively well-formed complex geometries taken from experimental
structures. Even complementary hydrogen bonding interactions
do not seem important enough to be included explicitly in order
to achieve a better prediction of binding free energies. Part of the
reason for this is that polar groups (both hydrogen acceptors and
hydrogen donors) must first be desolvated before they can
interact with each other. Evidently, aqueous media provide an
equal or greater number of hydrogen bonds with each partner, which
makes the overall energy gain unfeasible. The role of complementary
hydrogen bonding (and more general electrostatic interactions)
is most likely to provide specificity and selectivity for the binding
a ligand to a specific target. Thus, complementary contacts increase
the probability that interaction with any other target (hence off-
target effects) will be less pronounced, since purely HY D interactions
are not specific in nature. On the one hand, polar decoration is
necessary to ensure the drug-like ADMET properties.? Therefore,
complementary polar interactions are far more important at the
lead optimization stage. On the other hand, it has been shown
that explicit consideration of non-complementary interactions
leads to a certain improvement in model statistics. The description
of finer-grained contacts and most likely other factors controlling
the magnitude of ligand—receptor free energy should definitely
be considered, with a better description of desolvation being the
most likely suspect for further study.

Third, it appears that when a drug-like molecule interacts
with a biologically relevant target, several types of contacts (both
complementary and non-complementary) are simultaneously
established. Their mutual presence is manifested in the strong
mutual correlation of the contact surfaces of each possible contact
pair revealed in our work. Thus, using the principle of Occam’s
razor, in the early stages of developing the SF it was reasonable to
leave only complementary contacts. However, as already indicated
in the research devoted to such an SF as ScorpionScore,** it seems
that it is not just the counting of contacts that is important, but
their positive cooperativity. Thus, we hypothesize that an experienced
computer-aided drug discovery expert would be able to distinguish
such cases of positive cooperativity from cases in which
cooperativity is not feasible.

Fourth, it is interesting to note that we found that the set of
CASF-2016 complexes is by no means homogeneous in terms of
both ligand structures and underlying ligand-receptor interactions.
In particular, we show that the Q1 and Q4 subsets of complexes
in terms of LE values typically require significantly different

linear models, so the lack of explicit consideration of non-
complementary interactions is not a major source of residual
errors when describing experimental free energies using current
SFs, most of which already take into account complementary
hydrogen bonding interactions.

Finally, we hypothesize that the presence of non-complementary
contacts per seis not drastic for free energy, but rather indicates
missed opportunities in optimizing ligand specificity and selectivity.
Therefore, we expect that in the near future there will be a special
class of SFs that target the overall probability of a ligand becoming
a drug, rather than just the mere affinity of the ligand per se.

The results obtained showed that the a priori prospective
direction for further development of SFs turned out to be not as
promising as expected. At the same time, the well-defined
ligand—receptor complexes® from CASF-2016 that differ in LE
appear to have different binding patterns, requiring sufficiently
different models to describe the interactions. The above results
will help develop new SFs with higher accuracy and wider
applicability to be used in drug discovery.

This work was supported by the Russian Science Foundation
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