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 discovery is a very complex and risky process, 
tifactor optimization and numerous cross-functional 
puter-aided drug discovery helps simplify the 
cess and reduce some of the risks.1,2 Once the 

a drug target is well defined, it is often used in 
ith a set of structure-based drug discovery tools. 

ost widely used in hit finding and hit-to-lead processes 
ening using molecular docking, in which the most 
ing modes, as well as free energy estimations, are 

  silico on large libraries of potential ligands. Fast 
 the free energy of ligand–receptor affinity during 
rried out using scoring functions (SFs). Currently, 
 SFs have been proposed, namely physics (force 
SFs, empirical SFs, knowledge based SFs and 
ing based SFs.3,4

iquitously and successfully used in numerous drug 
projects.5 By design, SFs are a very rough 

n of the free energy of binding of a ligand to a 
 particular ligand–receptor position, their main 
that SFs enable structure-based virtual screening, 
arly stages of drug discovery to narrow down the 
uctures studied subsequently. The downside of the 
d high throughput of SFs is the need for post-
 the initial results using other techniques6 and the 
of expert visual inspection.7 The fact that a human 
e out unnatural and unlikely binding modes suggests 
st be quite significant criteria for the quality of a 
 that are currently still beyond the consideration of 
 classical SFs. Additionally, a recent class of machine 
 have been able to overcome the accuracy limit 
hieved by classical SFs,8,9 although there is still 
ubt that at least part of the success may be due to 

13 We hypothesize that one of the strong assumptions 
at currently only favorable interactions are generally 

considered. In this regard, given the multiple possible interactions, 
human expert visual inspection and machine learning SFs can go 
beyond the ‘favorable interactions only’ pattern. To the best of 
our knowledge, there has been no systematic study of the usefulness 
of including unfavorable or non-complementary interactions. 
The only exception is the work describing the parameterization 
of such SF as ScorpionScore,14 in which mismatched interactions 
were explicitly taken into account, but with little discussion and 
generalization.

The most common types of specific intermolecular interactions15 
considered in SFs are hydrophobic (HYD) interactions and 
hydrogen bonding, which are believed to constitute the major 
part of drug-like ligand–receptor interactions.16 Naturally, HYD 
ligand–HYD receptor interactions favorably influence the score, 
as do hydrogen bonding interactions in complementary donor 
(DON) ligand–acceptor (ACC) receptor and ACC ligand–DON 
receptor pairs. Thus, complementary ligand–receptor interactions 
include those designated as Lig(HYD)–Rec(HYD), Lig(ACC)–
Rec(DON) and Lig(DON)–Rec(ACC).

This work aims to explore the extent to which explicit 
consideration of non-complementary ligand–receptor interactions 
may play a role in better characterizing ligand–receptor interactions. 
Therefore, we specifically investigated how explicitly accounting 
for non-complementary interactions, such as Lig(HYD)–Rec(DON), 
Lig(HYD)–Rec(ACC), Lig(ACC)–Rec(HYD), Lig(DON)–
Rec(HYD), Lig(DON)–Rec(DON) and Lig(ACC)–Rec(ACC), 
helps to describe the experimental free energy of ligand–receptor 
interactions.

To this end, CASF-2016 Update,17 a well-established benchmark 
for evaluating SFs and the core set of the PDBBind database,18,19 

is used as a source of reference free energy. The complementary 
and non-complementary contact surfaces, called Contact Surface 
Areas (CSAs), are used as descriptors to build linear regularized 
models (LASSO20) in order to qualitatively and quantitatively 
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interpret the obtained results. LASSO models include a 
regularization coefficient l, larger values of which lead to zeroing 
out the contribution of less significant descriptors to the model.

Hereinafter, ‘CSA[lig_type+prot_type]’ denotes the contact 
area between ligand atoms, which have the ‘lig_type’ atomic 
type, and protein atoms, which have the ‘prot_type’ atomic type.

At the first stage of the research, we analyzed the distribution 
of complementary and non-complementary contact areas of the 
ligands.

The CASF-2016 core set was chosen as a standard and 
reliable source of both experimental 3D structures and binding 
affinities.17 Because of its certain bias towards generally well-
known and favorable complexes, the number of non-complementary 
contacts is a priori expected to be low, so we decided to test this 
hypothesis explicitly. The complexes were divided into quartiles 
according to the ligand efficiency (LE) value, which is a measure 
of the binding affinity per heavy (non-hydrogen) atom. It was 
calculated as the negative decimal logarithm of the inhibition 
constant (pKi) divided by the number of heavy atoms. The first 
quartile (Q1) contained 72 ligands with low 25% LE values, and 
the fourth quartile (Q4) contained 71 ligands with high 25% LE 

values, which means that Q4 ligands are quite more optimal than 
Q1 ones.

The idea of dividing a set of molecules was to outline the 
dissimilarities between its parts in a simple and intuitive way. 
In this particular case, it was assumed that the low LE (and hence 
lower density per atom, pKi/d) of ligands in Q1 is a direct 
consequence of the much more frequent presence of non-optimal 
(i.e., non-complementary) contacts compared to highly optimized 
ligands with high LE values in Q4. Thus, by comparing the 
distinct characteristics of the two subsets, we could see more 
clearly the importance of the explicit account of such contacts 
within the SF.

We first compared the CSA values for the complementary 
contacts (Figure 1).

The average CSA of the complementary contacts for Q1 
ligands is higher than for Q4 ligands, but the average binding 
affinity (pKi/d) is much higher for Q4 ligands. It seems that Q1 
ligands are generally more lipophilic, potentially hampering their 
ADMET properties.21 Accordingly, lipophilic ligand efficiency 
(LLE),21 balancing affinity and lipophilicity, is also higher for 
Q4 ligands in general and above the recommended threshold 
value of 5–6.21 It can be assumed that the higher the complementary 
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Figure 1 Distribution of the main characteristics of complexes with ligands having the lowest (Q1) and highest (Q4) LE values: (a) CSA[HYD+HYD], 
(b) CSA[DON+ACC], (c) CSA[ACC+DON], (d ) pKi/d, (e) logP and ( f ) LLE.
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Figure 2 Distribution of CSA values of the non-complementary contacts in complexes with ligands having the lowest (Q1) and highest (Q4) LE values: 
(a) CSA[HYD+DON], (b) CSA[HYD+ACC], (c) CSA[DON+DON], (d ) CSA[DON+HYD], (e) CSA[ACC+HYD] and ( f ) CSA[ACC+ACC].
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CSA, the lower the binding constant (i.e., the weaker the binding), 
which is contrary to common sense and the practice of chemists.7 
This suggests that another source of correction, presumably a 
non-complementary CSA (Figure 2), is needed.

However, the CSA of non-complementary contacts is also 
larger on average for Q1 ligands with low LE. It is assumed that 
such contacts are energetically unfavorable and must be compensated 
for by favorable contacts, thereby degrading the resulting binding 
energy. This means that they should be taken into account in the 
model describing binding energy.

At the second stage, we test the hypothesis about the 
importance of explicitly taking into account non-complementary 
contacts. To this end, we build several regression models that 
reproduce the reference experimentally measured binding free 
energy.

The first model only considers complementary contacts, such 
as CSA[HYD+HYD], CSA[DON+ACC] and CSA[ACC+DON]. 
The model was tested separately for Q1 and Q4 ligands. All 
descriptor values were normalized to range from 0 to 1, so b in 
equation (1) can be viewed as the minimum possible predicted 
value of DG on the set. At the same time, the value of b at high 
regularization coefficients (i.e., when wi = 0) can be considered 
as the average DG on the set.
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where DGbind is the binding free energy, R is the molar gas 
constant, T is the absolute temperature, Ki/d is the inhibition/
dissociation constant, CSAi is the CSA of the specific type, wi is 
the fitted regression coefficient, and b is the fitted intercept value.

First, it can be seen (Figure S1, see Online Supplementary 
Materials) that HYD interactions make the largest contribution 
in terms of binding affinity (energy). In addition, Lig(DON)–
Rec(ACC) and Lig(ACC)–Rec(DON) interactions have the 
same statistical weight and make a comparable contribution to 
the binding free energy value. Both types of interactions are 
considered favorable in the regression model, with a 
significantly larger contribution from HYD interactions 
compared to hydrogen bonding interactions. The latter is 
explained by both enthalpy and entropy contributions.15 
Overall, these observations are consistent with generally 
accepted knowledge in the field of medicinal chemistry,15 
which confirms the validity of the model.

Second, it should be noted that the R2 value in the scoring test 
for both ligands Q1 and Q4 corresponds to the range of R2 values 
obtained in the CASF-2016 benchmark17 for a diverse set of 
practically used SFs, which further confirms the validity and 
reasonableness of CSA as means of estimating the interaction 
measure.

Third, there is a significant difference between ligands Q1 and 
Q4. The baseline b (minimum and average predicted DG values) 
is significantly larger for Q4 ligands. The total contribution of 
HYD contacts is slightly less for Q4 ligands, while DON–ACC 
contacts are at the same level for both Q1 and Q4. In addition, 
the prediction quality (R2, MAE and RMSD) for Q4 complexes 
is drastically worse, meaning that there is a significant difference 
between the binding modes in these quartiles. One might 
speculate that the current model based only on complementary 
contacts is not sufficient to capture all kinds of valuable interactions 
involved in binding, and non-complementary contacts could be 
included as a correction. However, this discrepancy between 
predicted and experimental energies may also be related to the 
unavoidable uncertainties in the experimental data (e.g., imprecise 

3D geometries and chemical structures, missing water-mediated 
interactions and entropy contribution), as well as due to the 
crude SF approximation that associates a single protein–ligand 
conformation to an experimental value of binding affinity, which 
in practice reflects the affinity of the conformational ensemble. 
Next, we test only the first assumption about the importance of 
non-complementary contacts.

In the second model, in addition to complementary contacts, 
non-complementary polar–HYD contacts are taken into account. 
DON–DON and ACC–ACC contacts were excluded from the 
model due to their purely electrostatic nature, in contrast to 
polar–HYD contacts.

Compared to the model that only considers complementary 
contacts (see Figure S1), the model that additionally considers 
non-complementary contacts (Figure S2) performs numerically 
better (Table 1) in terms of R2, MAE and RMSD for both Q1 and 
Q4 complexes. However, the reduction in residual error (both 
MAE and RMSD) is an order of magnitude lower than the 
residual error itself.

It is also clear from Figure S2 that the quality of the extended 
model for Q4 ligands is still noticeably worse than the quality of 
the model for Q1, which means that there are certain energetic 
terms that have yet to be taken into account but are not observed 
in the current model. An additional experiment taking into 
account all types of atoms not included in the previous definitions 
(denoted by the atomic type ‘OTH’) unexpectedly leads to a 
significant improvement in the statistics of the produced linear 
models (Table S3, see Online Supplementary Materials), especially 
for the Q4 part of the set (R2 = 0.71, MAE = 1.19 and 
RMSD = 1.42). The latter means that seemingly important 
interactions, and possibly their cooperativity, are currently not 
accounted for in contemporary classical SFs, and also provides 
an additional explanation for the relative success of the machine 
learning SFs. However, it should be noted that inclusion of all 
ligand and receptor atom type pairs as well as ‘OTH’ effectively 
results in doubling the number of CSA descriptors.

However, this minor numerical improvement comes at the 
cost of a loss of qualitative interpretability (and potentially practical 
applicability). For example, the contacts Lig(DON)–Rec(ACC) 
are considered unfavorable in this model (see Figures S2), while 
the contacts Lig(ACC)–Rec(DON) retain their favorability, 
unlike what we saw before (see Figure S1). At the same time, the 
interaction energy of polar–HYD contacts, which also includes 
uncompensated desolvation of polar parts, is very favorable.

The reason is the highly linearly correlated CSA values 
between different protein atom types and a single ligand atom 
type (see Table S3). The correlation itself is due to the peculiarities 
of the binding site pockets, which are heterogeneous and contain 
closely spaced atoms of different types. This means that the ligand 
inevitably forms both complementary and non-complementary 
contacts with the protein.

All of the above leads us to the conclusion that non-
complementary contacts at this level of detail do not fulfill the 
expected role of a counterweight to complementary contacts and 
their explicit consideration does not take SF predictions to a 

Table  1  Statistical metrics (in scoring power test) of different linear 
regression models aimed at reproducing binding free energy.

Ligand–receptor 
interactions

R2 MAE/kcal mol−1 RMSD/kcal mol−1

Q1 Q4 Q1 Q4 Q1 Q4

Complementary only 0.60 0.33 1.29 1.81 1.66 2.14
Complementary + 
non-complementary

0.71 0.46 1.09 1.61 1.42 1.93
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qualitatively new level. Moreover, due to the high degree of 
linear correlation between complementary and non-complementary 
CSAs (see Table  S3), they are already implicitly taken into 
account by most existing SFs. Another point is that the current 
model does not include any terms that are shown to be unfavorable 
in terms of contribution to binding energy. However, the process 
of binding and formation of ligand–protein contacts is always 
accompanied, e.g., by the loss of ligand–water and protein–water 
contacts (a penalty for desolvation), which is not taken into account by 
the current model and is rarely taken into account by empirical SFs.

Returning to what an experienced medicinal chemist might 
see beyond the predictions of current SFs, several conclusions 
can be drawn. First, the dominant and highly robust factor that is 
crucial for ligand–receptor interactions is the combination of 
shape complementarity22 and HYD interactions,15 which are both 
accounted for by CSA[HYD+HYD]. This fits well with both 
existing theory and practice of medicinal chemistry. These types 
of interactions have been consistently used in almost all known 
SFs,15,17,23 which are in good agreement with the occurrence of 
close contacts in experimental structures.16

Second, the role of contact complementarity in terms of contact 
types is, somewhat surprisingly, not as important as might be 
expected, at least in the context of free energy predictions for 
relatively well-formed complex geometries taken from experimental 
structures. Even complementary hydrogen bonding interactions 
do not seem important enough to be included explicitly in order 
to achieve a better prediction of binding free energies. Part of the 
reason for this is that polar groups (both hydrogen acceptors and 
hydrogen donors) must first be desolvated before they can 
interact with each other. Evidently, aqueous media provide an 
equal or greater number of hydrogen bonds with each partner, which 
makes the overall energy gain unfeasible. The role of complementary 
hydrogen bonding (and more general electrostatic interactions) 
is most likely to provide specificity and selectivity for the binding 
a ligand to a specific target. Thus, complementary contacts increase 
the probability that interaction with any other target (hence off-
target effects) will be less pronounced, since purely HYD interactions 
are not specific in nature. On the one hand, polar decoration is 
necessary to ensure the drug-like ADMET properties.21 Therefore, 
complementary polar interactions are far more important at the 
lead optimization stage. On the other hand, it has been shown 
that explicit consideration of non-complementary interactions 
leads to a certain improvement in model statistics. The description 
of finer-grained contacts and most likely other factors controlling 
the magnitude of ligand–receptor free energy should definitely 
be considered, with a better description of desolvation being the 
most likely suspect for further study.

Third, it appears that when a drug-like molecule interacts 
with a biologically relevant target, several types of contacts (both 
complementary and non-complementary) are simultaneously 
established. Their mutual presence is manifested in the strong 
mutual correlation of the contact surfaces of each possible contact 
pair revealed in our work. Thus, using the principle of Occam’s 
razor, in the early stages of developing the SF it was reasonable to 
leave only complementary contacts. However, as already indicated 
in the research devoted to such an SF as ScorpionScore,14 it seems 
that it is not just the counting of contacts that is important, but 
their positive cooperativity. Thus, we hypothesize that an experienced 
computer-aided drug discovery expert would be able to distinguish 
such cases of positive cooperativity from cases in which 
cooperativity is not feasible.

Fourth, it is interesting to note that we found that the set of 
CASF-2016 complexes is by no means homogeneous in terms of 
both ligand structures and underlying ligand–receptor interactions. 
In particular, we show that the Q1 and Q4 subsets of complexes 
in terms of LE values typically require significantly different 

linear models, so the lack of explicit consideration of non-
complementary interactions is not a major source of residual 
errors when describing experimental free energies using current 
SFs, most of which already take into account complementary 
hydrogen bonding interactions.

Finally, we hypothesize that the presence of non-complementary 
contacts per se is not drastic for free energy, but rather indicates 
missed opportunities in optimizing ligand specificity and selectivity. 
Therefore, we expect that in the near future there will be a special 
class of SFs that target the overall probability of a ligand becoming 
a drug, rather than just the mere affinity of the ligand per se.

The results obtained showed that the a  priori prospective 
direction for further development of SFs turned out to be not as 
promising as expected. At the same time, the well-defined 
ligand–receptor complexes9 from CASF-2016 that differ in LE 
appear to have different binding patterns, requiring sufficiently 
different models to describe the interactions. The above results 
will help develop new SFs with higher accuracy and wider 
applicability to be used in drug discovery.
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