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Temperature sensitive synthetic polymers are commonly used for 
this purpose, N-alkyl-substituted polyacrylamides being one of 
them.16 The synthesis of thermosensitive polysaccharide hydrogels 
involves either using synthetic polymers with reactive groups 
introduced for subsequent grafting onto the polysaccharide,17,18 or 
copolymerization of monomers with a preliminarily activated or 
modified polysaccharide.19–22 Copolymerization of monomers 
with unsaturated polysaccharide derivatives seems to be the most 
convenient method as it allows regulating the amount of functional 
groups introduced into SA and, hence, the number of binding sites 
of synthetic polymer chains with SA. Besides, the latter way 
avoids a decrease in the molecular weight of polysaccharide, 
which occurs during activation or modification of SA.

The aim of this work was to create thermosensitive hydrogels 
based on synthetic polymer poly(N,N-diethylacrylamide) 
(PDEAAm) and natural polysaccharide SA with a controllable 
lower critical solution temperature (LCST) and to study the 
possibility of their use as a drug carrier. The hydrogels with 
LCST have been synthesized by copolymerization of SA 
unsaturated derivative (MSA) and DEAAm in the presence of 
N,N'-methylenebisacrylamide as the crosslinking agent. 
Monomer MSA was obtained by the reaction of SA with glycidyl 
methacrylate (for details, see Online Supplementary Materials). 
The compositions and physical-chemical properties of the 
copolymerized hydrogels obtained in comparison with the two-
component mixed hydrogel PDEAAm–SA and the homopolymer 
PDEAAm are presented in Table 1.

The presence of SA in the mixed hydrogel seems not to affect 
the LCST value that remains almost the same as for the hydrogels 
based on homopolymer PDEAAm. In contrast with this type of 
hydrogels, the network structure of hydrogels obtained by 
copolymerization of MSA and DEAAm allows an adjustment of 
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the LCST. The scanning electron microscopy (SEM) data reveal 
differences in the structure of the gels obtained by the two methods, 
namely, polymerization of DEAAm in the presence of SA with 
subsequent crosslinking SA by calcium ions and copolymerization 
of DEAAm with an SA unsaturated derivative. The structure of 
mixed gels [Figure 1(a)] is sparser, with many large pores. The 
gels obtained by copolymerization [Figure 1(b)] are more 
structured and we can trace the presence of two types of networks 
in the SEM imagies.

The LCST value of the copolymerized hydrogels increases 
significantly and reaches 38 °C, which corresponds to physiological 
values. It should be noted that the values of the swelling degrees of 
hydrogels containing a similar amount of alginate, but obtained by 
two different methods, were almost the same.

To elucidate the possibility of using thermal sensitivity as a 
driving force for drug release, we studied the kinetics of the drug 
lidocaine hydrochloride (LD) release from hydrogels in phosphate 
buffer saline (PBS) at pH 7.4 (for details, see Online 
Supplementary Materials). The experiments on drug release from 
the copolymerized hydrogels with modified alginate PDEAAm–
MSA were carried out at room (23 °C) and physiological (37 °C) 
temperatures. The dependence of the LD release rate from the 
hydrogel on the incubation temperature is shown in Figure 2. 
Indeed, heating the hydrogel above the LCST results in a 
conformational transition of macromolecules of hydrogels and a 
decrease in their swelling degree, which accelerate the drug release 
rate because of LD ejection from the carrier volume.

In conclusion, the results obtained allow us to control the 
LCST of the gels and consider the synthesized hydrogels 

PDEAAm–MSA as a basis for the development of drug carriers 
with a temperature-controlled drug release rate.
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Table  1  Compositions and physical-chemical properties of the hydrogels.
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a The hydrogel composition determined by elemental analysis. b Swelling degree (swelling ratio, SR) of the gels in relative units was determined from the 
formula SR = (mt – m0)/m0, where m0 and mt are the masses of dry and equilibrium swollen gels, respectively. c The LCST was determined as described in 
refs. 23 and 24. For details, see Online Supplementary Materials.

Figure  1  SEM images of (a) the mixed gel PDEAAM–SA and (b) the 
copolymerized gel PDEAAm–MSA.
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Figure  2  Kinetics of the LD release from the PDEAAm–MSA hydrogel in 
PBS at pH 7.4 and temperatures above and below the LCST: at (1) 23 °C and 
(2) 37 °C. LDt is the current amount of LD (mg) in the solution, LDin is the 
initial amount of LD (mg) in the gel sample.
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