
## Divergent oriented synthesis of 2*H*-1,2,3-triazoles via rearrangement of furoxanylhydrazones

Vera A. Sereda and Leonid L. Fershtat\*

*N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. E-mail: fershtat@bk.ru*

DOI: 10.1016/j.mencom.2023.10.008

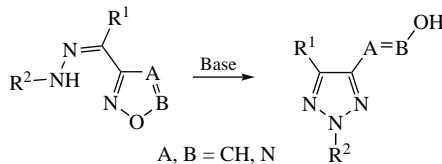
**Base- and thermally induced rearrangements of readily available furoxanylhydrazones were investigated. Variation of reaction conditions enables a preparation of structurally diverse functionally substituted 2*H*-1,2,3-triazoles from the same starting materials.**



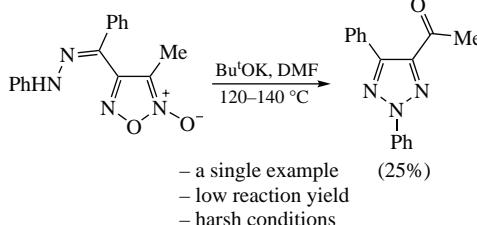
**Keywords:** furoxan, nitrogen heterocycles, rearrangement, triazole, azole.

*Dedicated to the leader of Zelinsky Institute of Organic Chemistry, Academician M. P. Egorov on the occasion of his 70th birthday.*

Nitrogen heterocycles are the most frequently occurred structural motifs in various pharmaceuticals and promising drug candidates.<sup>1</sup> According to the U.S. FDA database, >59% of clinically used small-molecule medicines incorporate a nitrogen heterocycle subunit.<sup>2</sup> However, the construction of individual pharmaceutical scaffolds using known synthetic methodologies often involves multi-step and energy-consuming procedures or suffers from a lack of reproducibility and scalability. Therefore, a creation of novel step-economy protocols for the assembly of various nitrogen-containing heterocyclic scaffolds remains highly urgent.<sup>3</sup>

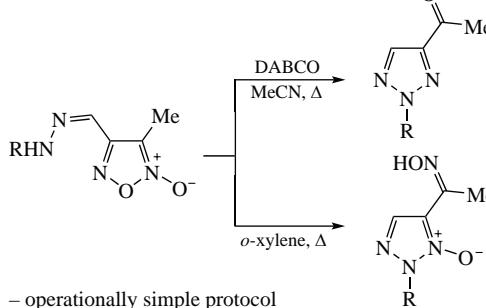

In a broad series of nitrogen heterocycles, 1,2,3-triazoles have been known as a desired aim in click chemistry featuring exquisite selectivity and bioorthogonality.<sup>4</sup> Moreover, 1,2,3-triazoles find myriad applications as approved pharmaceuticals or promising drug candidates with a broad range of biological activities,<sup>5</sup> effective inhibitors of the corrosion process of metals or their alloys,<sup>6</sup> components of functionalized polymeric materials<sup>7</sup> or high-energy substances.<sup>8</sup> Closely related 2*H*-1,2,3-triazole 1-oxides are far less explored in spite of their structural similarity. Recently, our team created a novel, environmentally benign strategy for the electrooxidative formation of 1,2,3-triazole 1-oxides.<sup>9</sup> Taking into account the presence of the *N*-oxide moiety, 1,2,3-triazole 1-oxides may provide not only useful insights into the development of novel functional organic materials,<sup>10</sup> but also serve as exogenous nitric oxide (NO) donors for various biomedical applications.<sup>11</sup> Therefore, the development of diverse synthetic protocols for an assembly of 2*H*-1,2,3-triazole and their *N*-oxides remains desired.

Previously, it was shown, that 2*H*-1,2,3-triazoles can be prepared from other functionally substituted heterocycles through a so-called azole-to-azole interconversion. To accomplish this rearrangement, the initial azole has to contain a ring-conjugated side chain reacting as a nucleophile (e.g., hydrazone moiety) toward the pivotal annular nitrogen atom in the  $S_N^1$ -type reaction followed by a cleavage of the adjacent bond to form a new azole [Scheme 1(a)].<sup>12</sup> There is a single example of the preparation of 5-acetyl-2,4-diphenyl-2*H*-1,2,3-triazole via base-induced rearrangement of the corresponding furoxanyl-

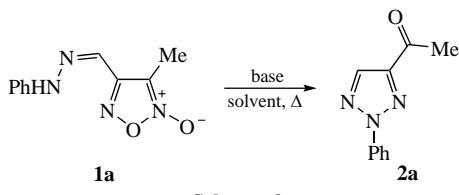

hydrazone followed by one-pot Nef reaction [Scheme 1(b)].<sup>13</sup> However, the described synthetic procedure required harsh reaction conditions and exhaustive preparative TLC purification, which is rather inconvenient. Herein, we present divergent oriented synthesis of 2*H*-1,2,3-triazoles and their 1-oxides *via*

### Previous works

#### (a) General azole–azole rearrangement




#### (b) Synthesis of 2*H*-1,2,3-triazole *via* rearrangement of furoxanylhydrazone




#### This work

#### (c) Divergent oriented synthesis of 2*H*-1,2,3-triazoles from furoxanylhydrazones

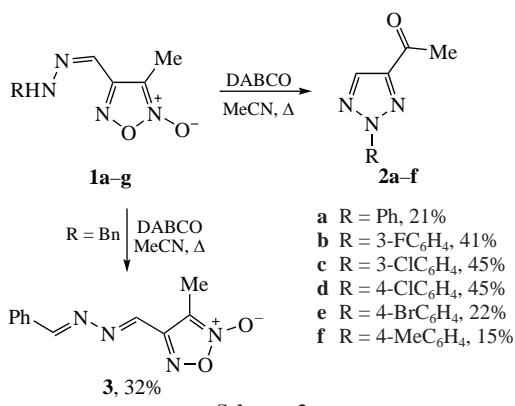


**Scheme 1**

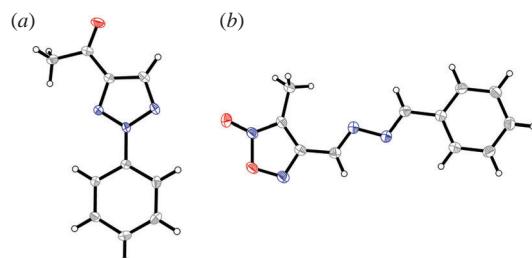


Scheme 2

Table 1 Optimization of the synthesis of 2*H*-1,2,3-triazole **2a**.<sup>a</sup>

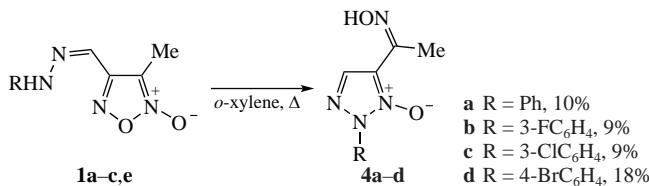

| Entry | Base                            | Solvent        | Yield of <b>2a</b> (%) <sup>b</sup> |
|-------|---------------------------------|----------------|-------------------------------------|
| 1     | NaOH                            | MeOH           | 4                                   |
| 2     | K <sub>2</sub> CO <sub>3</sub>  | DMF            | 4                                   |
| 3     | K <sub>2</sub> CO <sub>3</sub>  | MeCN           | 10                                  |
| 4     | MeONa                           | MeOH           | 15                                  |
| 5     | Cs <sub>2</sub> CO <sub>3</sub> | MeCN           | 18                                  |
| 6     | CsF                             | MeCN           | 13                                  |
| 7     | NaHMDS                          | THF            | — <sup>c</sup>                      |
| 8     | NaH                             | THF            | — <sup>c</sup>                      |
| 9     | DBU                             | MeCN           | 20                                  |
| 10    | DABCO                           | MeCN           | 21                                  |
| 11    | DABCO                           | dioxane        | 11                                  |
| 12    | Py                              | — <sup>d</sup> | — <sup>c</sup>                      |
| 13    | DMAP                            | MeCN           | 11                                  |

<sup>a</sup> Reaction conditions: furoxanylhydrazone **1a** (0.5 mmol), base (0.5 mmol), solvent (2.5 ml), reflux for 2–24 h. <sup>b</sup> Isolated yields. <sup>c</sup> Trace amounts of **2a** were detected by TLC. <sup>d</sup> Neat reaction.


rearrangement of readily available furoxanylhydrazones [Scheme 1(c)].

Our investigations toward rearrangement of furoxanylhydrazones started from the optimization of the reaction conditions. Hydrazone **1a** was used as a suitable substrate and various bases and solvents were screened (Scheme 2, Table 1). Since the reaction did not proceed at temperatures below 50 °C, all experiments were performed under reflux. It was found that utilization of common inorganic bases (NaOH, K<sub>2</sub>CO<sub>3</sub>) in different solvents resulted in low yields of 2*H*-1,2,3-triazole **2a** (entries 1–3). Rearrangement of substrate **1a** promoted by MeONa, Cs<sub>2</sub>CO<sub>3</sub> or CsF provided somewhat better yields of the product **2a** (entries 4–6), while utilization of NaHMDS or NaH gave only trace amounts of **2a** (entries 7, 8). Strong sterically hindered organic bases (DBU, DABCO) also provided 2*H*-1,2,3-triazole **2a** (entries 9–11) and the highest yield of **2a** (21%) was achieved upon conducting the reaction in MeCN (entry 10). Pyridine and DMAP were less efficient (entries 12, 13). Thus, optimal conditions for the synthesis of **2a** were utilization of DABCO in refluxing MeCN (entry 10).

Under optimized conditions, substrate scope for base-induced rearrangement of furoxanylhydrazones **1** was studied. It was found that hydrazones **1a–f** bearing aryl fragment at the hydrazone moiety underwent rearrangement affording target




Scheme 3

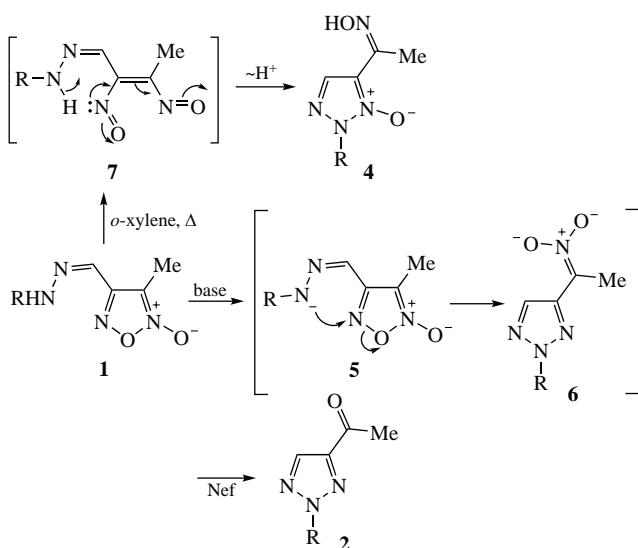
Figure 1 Molecular structures of compounds (a) **2a** and (b) **3** with atoms shown as thermal ellipsoids at 50% probability level.

2*H*-1,2,3-triazoles **2a–f** in fair yields. At the same time, an introduction of hydrazone **1g** incorporating benzyl motif gave unexpectedly azine **3** as a sole reaction product (Scheme 3). Arguably, in this case aerobic oxidation of the substrate **1g** is a favorable process due to the formation of a prolonged conjugated system in azine **3**. On the other hand, conducting rearrangement of hydrazone **1g** in argon atmosphere led to azine **3** in a very low yield (3%) and no other products were detected, which may serve as evidence for aerial oxidation of the substrate **1g**. It should also be noted that the studied reaction showed good scalability and conducting rearrangement of hydrazone **1a** on 5 mmol scale resulted in almost the same yield of 1,2,3-triazole **2a** (20%). All compounds were characterized by NMR spectroscopy and high-resolution mass spectrometry. The conclusive data on the structures of 2*H*-1,2,3-triazole **2a** and azine **3** were obtained by the single-crystal X-ray diffraction study (Figure 1; for details, see Online Supplementary Materials).<sup>†</sup>

Interestingly, upon prolonged heating in *o*-xylene in the absence of any bases furoxanylhydrazones **1** underwent a similar rearrangement, albeit resulting in a formation of 2*H*-1,2,3-triazole 1-oxides **4** (Scheme 4). Although large amounts of



Scheme 4


<sup>†</sup> Crystal data for **2a**. C<sub>10</sub>H<sub>9</sub>N<sub>3</sub>O ( $M_r = 187.20$ ), triclinic, space group P1,  $a = 5.6693(3)$ ,  $b = 7.2303(3)$  and  $c = 11.6096(5)$  Å,  $V = 443.38(4)$  Å<sup>3</sup>,  $Z = 2$ ,  $d_x = 1.402$  g cm<sup>-3</sup>, absorption coefficient: 0.096 mm<sup>-1</sup>,  $F(000) = 196$ , the final  $R = 0.0535$ ,  $wR = 0.1129$  for 2404 observed reflections with  $I > 2\sigma(I)$ .

Crystal data for **3**. C<sub>11</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub> ( $M_r = 230.23$ ), monoclinic, space group P2<sub>1</sub>/n,  $a = 6.9334(2)$ ,  $b = 12.2596(4)$  and  $c = 12.9102(4)$  Å,  $V = 1070.43(6)$  Å<sup>3</sup>,  $Z = 4$ ,  $d_x = 1.429$  g cm<sup>-3</sup>, absorption coefficient: 0.858 mm<sup>-1</sup>,  $F(000) = 480$ , the final  $R = 0.0346$ ,  $wR = 0.0982$  for 4147 observed reflections with  $I > 2\sigma(I)$ .

X-ray diffraction data in both experiments were collected at 100 K on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (graphite monochromator, shutterless  $\phi$ - and  $\omega$ -scan technique), using MoK<sub>α</sub>-radiation. The intensity data were integrated by the SAINT program<sup>14</sup> and corrected for absorption and decay using SADABS.<sup>15</sup> The structure was solved by direct methods using SHELXT<sup>16</sup> and refined on  $F^2$  using SHELXL-2018.<sup>17</sup> All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. The SHELXTL program suite<sup>14</sup> was used for molecular graphics.

Crystal data and structure refinement parameters are given in Online Supplementary Materials.

CCDC 2287317 (**2a**) and 2289518 (**3**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <http://www.ccdc.cam.ac.uk>.



starting material decomposed under these conditions, we were able to isolate 2*H*-1,2,3-triazole 1-oxides **4** bearing a (hydroxyimino)ethyl moiety at the C(5) position of the heterocyclic ring.

Plausible mechanisms of both studied base- and thermally-induced rearrangements of furoxanylhydrazones are outlined in Scheme 5. Substrate **1** undergoes deprotonation under the action of a strong base and thus generated nitrogen-centered anion **5** rearranges into the 2*H*-1,2,3-triazole **6** via azole-to-azole interconversion. Subsequent Nef reaction furnishes the formation of acetyl-1,2,3-triazoles **2**. In the case of thermal rearrangement, it is known that the furoxan ring is capable of thermal ring cleavage at elevated temperatures (>110 °C) to generate unstable dinitrosoethylene intermediate, which may undergo cyclization to another furoxan regioisomer. This feature is usually applied to regulate ratios of furoxan regioisomers.<sup>18</sup> However, there are a few reports on trapping dinitrosoethylene intermediates to form structurally diverse nitrogen-containing species.<sup>19</sup> In our case, we suppose that upon heating in *o*-xylene furoxanylhydrazones **1** generate dinitrosoethylene intermediates **7** and hydrazone moiety is served as a nucleophilic trap for a closer nitroso group resulting in the formation of 2*H*-1,2,3-triazole 1-oxides **4**.

In conclusion, divergent oriented synthesis of 2*H*-1,2,3-triazoles and their 1-oxides *via* rearrangement of readily available furoxanylhydrazones was realized. It was shown that base-induced rearrangement of furoxanylhydrazones provided a direct access to acetyl-2*H*-1,2,3-triazoles, while thermal rearrangement of the same substrates gave (hydroxyimino)ethyl-2*H*-1,2,3-triazole 1-oxides, albeit in low yields. These results supplement known approaches in azole-to-azole interconversions to increase the availability of functionally substituted polynitrogen heterocycles.

Crystal structure determination was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow.

#### Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.10.008.

#### References

- (a) J. M. Smith, J. A. Dixon, J. N. deGruyter and P. S. Baran, *J. Med. Chem.*, 2019, **62**, 2256; (b) S. W. Kraska, D. A. DiRocco, S. D. Dreher and M. Shevlin, *Acc. Chem. Res.*, 2017, **50**, 2976; (c) Y.-J. Liu, H. Xu, W.-J. Kong, M. Shang, H.-X. Dai and J.-Q. Yu, *Nature*, 2014, **515**, 389; (d) E. C. Hansen, D. J. Pedro, A. C. Wotal, N. J. Gower, J. D. Nelson, S. Caron and D. J. Weix, *Nat. Chem.*, 2016, **8**, 1126; (e) M. C. Hilton, X. Zhang, B. T. Boyle, J. V. Alegre-Requena, R. S. Paton and A. McNally, *Science*, 2018, **362**, 799.
- (a) P. Das, M. D. Delost, M. H. Qureshi, D. T. Smith and J. T. Njardarson, *J. Med. Chem.*, 2019, **62**, 4265; (b) E. Vitaku, D. T. Smith and J. T. Njardarson, *J. Med. Chem.*, 2014, **57**, 10257.
- (a) Y. Kawamata, J. C. Vantourout, D. P. Hickey, P. Bai, L. Chen, Q. Hou, W. Qiao, K. Barman, M. A. Edwards, A. F. Garrido-Castro, J. N. deGruyter, H. Nakamura, K. Knouse, C. Qin, K. J. Clay, D. Bao, C. Li, J. T. Starr, C. Garcia-Irizarry, N. Sach, H. S. White, M. Neurock, S. D. Minteer and P. S. Baran, *J. Am. Chem. Soc.*, 2019, **141**, 6392; (b) X. Zhang and A. McNally, *ACS Catal.*, 2019, **9**, 4862; (c) A. J. Boddy, D. P. Affron, C. J. Cordier, E. L. Rivers, A. C. Spivey and J. A. Bull, *Angew. Chem., Int. Ed.*, 2019, **58**, 1458; (d) R. Dorel and A. M. Echavarren, *Chem. Rev.*, 2015, **115**, 9028; (e) K. C. Nicolaou, C. R. H. Hale, C. Nileske and H. A. Ioannidou, *Chem. Soc. Rev.*, 2012, **41**, 5185.
- (a) N. Z. Fantoni, A. H. El-Sagheer and T. Brown, *Chem. Rev.*, 2021, **121**, 7122; (b) J. Totobenazara and A. J. Burke, *Tetrahedron Lett.*, 2015, **56**, 2853; (c) M. S. Ziegler, K. V. Lakshmi and T. D. Tilley, *J. Am. Chem. Soc.*, 2017, **139**, 5378.
- (a) P. Prasher and M. Sharma, *Med. Chem. Commun.*, 2019, **10**, 1302; (b) M. Xu, Y. Peng, L. Zhu, S. Wang, J. Ji and K. P. Rakesh, *Eur. J. Med. Chem.*, 2019, **180**, 656; (c) L. Chen, L. J. Keller, E. Cordasco, M. Bogyo and C. S. Lentz, *Angew. Chem., Int. Ed.*, 2019, **58**, 5643; (d) M. Serafini, T. Pirali and G. C. Tron, *Adv. Heterocycl. Chem.*, 2021, **134**, 101; (e) D. Lengerli, K. Ibis, Y. Nural and E. Banoglu, *Expert Opin. Drug Discov.*, 2022, **17**, 1209.
- (a) M. Faisal, A. Saeed, D. Shahzad, N. Abbas, F. A. Larik, P. A. Channar, T. A. Fattah, D. M. Khan and S. A. Shehzadi, *Corros. Rev.*, 2018, **36**, 507; (b) Yu. I. Kuznetsov, *Int. J. Corros. Scale Inhib.*, 2020, **9**, 1142; (c) E. Armelin, R. Whelan, Y. M. Martinez-Triana, C. Aleman, M. G. Finn and D. D. Diaz, *ACS Appl. Mater. Interfaces*, 2017, **9**, 4231.
- (a) J. Huo, C. Lin and J. Liang, *React. Funct. Polym.*, 2020, **152**, 104531; (b) Y. Chen, H. Chen and H. Tian, *Chem. Commun.*, 2015, **51**, 11508.
- (a) S. Feng, P. Yin, C. He, S. Pang and J. M. Shreeve, *J. Mater. Chem. A*, 2021, **9**, 12291; (b) S. Feng, F. Li, X. Zhao, Y. Qian, T. Fei, P. Yin and S. Pang, *Energ. Mater. Front.*, 2021, **2**, 125; (c) L. Pei, Q. Lai, P. Yin and S. Pang, *Cryst. Growth Des.*, 2023, **23**, 3595.
- K. Titenkova, A. D. Shubaev, F. E. Teslenko, E. S. Zhilin and L. L. Fershtat, *Green Chem.*, 2023, **25**, 6686.
- (a) A. A. Larin and L. L. Fershtat, *Mendeleev Commun.*, 2022, **32**, 703; (b) S. G. Zlotin, A. M. Churakov, M. P. Egorov, L. L. Fershtat, M. S. Klenov, I. V. Kuchurov, N. N. Makhova, G. A. Smirnov, Yu. V. Tomilov and V. A. Tartakovskiy, *Mendeleev Commun.*, 2021, **31**, 731; (c) P. Yin, Q. Zhang and J. M. Shreeve, *Acc. Chem. Res.*, 2016, **49**, 4; (d) A. A. Larin, A. V. Shaferov, K. A. Monogarov, D. B. Meerov, A. N. Pivkina and L. L. Fershtat, *Mendeleev Commun.*, 2022, **32**, 111.
- (a) L. L. Fershtat and E. S. Zhilin, *Molecules*, 2021, **26**, 5705; (b) L. L. Fershtat and N. N. Makhova, *ChemMedChem*, 2017, **12**, 622; (c) K. Schönafinger, *Il Farmaco*, 1999, **54**, 316; (d) A. Gasco and K. Schönafinger, in *Nitric Oxide Donors: For Pharmaceutical and Biological Applications*, eds. P. G. Wang, T. B. Cai and N. Taniguchi, Wiley-VCH, Weinheim, 2005, pp. 131–175; (e) A. S. Kulikov, M. A. Epishina, E. S. Zhilin, A. D. Shubaev, L. L. Fershtat and N. N. Makhova, *Mendeleev Commun.*, 2021, **31**, 42; (f) L. L. Fershtat and F. E. Teslenko, *Synthesis*, 2021, **53**, 3673.
- (a) N. N. Makhova, I. V. Ovchinnikov, A. S. Kulikov, S. I. Molotov and E. L. Baryshnikova, *Pure Appl. Chem.*, 2004, **76**, 1691; (b) A. J. Boulton and P. B. Ghosh, *Adv. Heterocycl. Chem.*, 1969, **10**, 1; (c) A. R. Katritzky and M. F. Gordeev, *Heterocycles*, 1993, **35**, 483.
- E. L. Baryshnikova and N. N. Makhova, *Mendeleev Commun.*, 2000, **10**, 190.
- Bruker, APEX-III*, Bruker AXS, Madison, WI, USA, 2018.
- L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3.
- G. M. Sheldrick, *Acta Cryst. Crystallogr.*, 2015, **A71**, 3.
- G. M. Sheldrick, *Acta Cryst. Crystallogr.*, 2015, **C71**, 3.
- (a) N. N. Makhova and L. L. Fershtat, *Tetrahedron Lett.*, 2018, **59**, 2317; (b) D. M. Bystrov, L. L. Fershtat and N. N. Makhova, *Chem. Heterocycl. Compd.*, 2019, **55**, 1143; (c) A. A. Larin, D. D. Degtyarev, I. V. Ananyev, A. N. Pivkina and L. L. Fershtat, *Chem. Eng. J.*, 2023, **470**, 144144.
- S.-C. Chan, J. England, K. Wieghardt and C.-Y. Wong, *Chem. Sci.*, 2014, **5**, 3883.

Received: 21st August 2023; Com. 23/7231