

**Protolysis of five-membered metallacyclocumulene complexes
of zirconocene and hafnocene**

**Maxim V. Andreev, Vyacheslav S. Bogdanov, Mikhail A. Frolov, Elizaveta R. Nurzhanova,
Alexander F. Smol'yakov and Vladimir V. Burlakov**

Table of Contents:

1. Crystal data and structure refinement parameters for the complex 3b	S2
2. Experimental section	S3
3. ^1H and ^{13}C NMR spectra of alkyl complex of zirconocene chloride 3a	S7
3. ^1H and ^{13}C NMR spectra of alkyl complex of hafnocene chloride 3b	S8
3. ^1H and ^{13}C NMR spectra of <i>trans</i> -2,2,7,7-tetramethyloct-3-en-5-yne 4	S9
3. ^1H and ^{13}C NMR spectra of zirconacycloallene complex 5	S10

Table S1. Crystal data, data collection and structure refinement parameters for **3a**

Identification code	3a
Empirical formula	C ₂₂ H ₂₇ ClHf
Formula weight	505.37
Temperature/K	120
Crystal system	Orthorhombic
Space group	Pnma
a/Å	9.6720(7)
b/Å	11.2652(8)
c/Å	18.5235(13)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2018.3(2)
Z	4
ρ _{calc} g/cm ³	1.663
μ/mm ⁻¹	5.301
F(000)	992.0
Crystal size/mm ³	0.18 × 0.12 × 0.08
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.232 to 59.994
Index ranges	-13 ≤ h ≤ 13, -15 ≤ k ≤ 15, -26 ≤ l ≤ 26
Reflections collected	34457
Independent reflections	3082 [R _{int} = 0.0293, R _{sigma} = 0.0128]
Data/restraints/parameters	3082/0/126
Goodness-of-fit on F ²	1.063
Final R indexes [I>=2σ (I)]	R ₁ = 0.0159, wR ₂ = 0.0389

$$^a R_1 = \sum | |F_o| - |F_c| | / \sum |F_o|$$

$$^b wR_2 = \{ \sum [w(F_o^2 - F_c^2)^2] / \sum w(F_o^2)^2 \}^{1/2}$$

2. EXPERIMENTAL SECTION

Experiments were carried out under Ar with careful exclusion of air and moisture using standard Schlenk techniques. The starting five-membered zirconacyclocumulene **1a**^{S1}, hafnacyclocumulene **1b**^{S2} and bis(trimethylsilyl)acetylene complex of zirconocene **6**^{S3} were prepared according to the published procedure. Commercial ^tBuC≡C—C≡C^tBu was purchased from Sigma Aldrich and used without additional purification. A 4M solution of HCl in dioxane was also purchased from Sigma Aldrich. Solvents (THF, toluene, *n*-pentane, *n*-hexane) were purified by conventional methods and freshly distilled prior to use over metallic sodium under Ar. The ¹H and ¹³C NMR spectra were recorded on AV-400 spectrometer. Chemical shifts (¹H, ¹³C) are given relative to SiMe₄ and are referenced to signals of benzene-*d*₆ (δ _H 7.16 ppm, δ _C 128.0 ppm). The Raman spectra were registered on a JY LABRAM 300 spectrometer (He–Ne laser, 632.8 nm, 5 mW). The mass spectra were recorded on MAT 95-XP and Finnigan Polaris Q instruments. Melting points are uncorrected and were measured in sealed capillaries.

*Protolysis of complex **1a** and synthesis of **3a**.* Complex **1a** (0.795 g, 2.07 mmol) was dissolved in toluene (15 ml), and the resulting yellow-brown solution was treated with a 4M solution (0.5 ml, 2.0 mmol) of HCl in dioxane at room temperature. Immediately, the reaction mixture turned yellow. After 1-2 min, the solution was evaporated *in vacuo* to dryness and the obtained residue was extracted with *n*-hexane (15 ml) at 60°C. Then, the resulting extract was filtrated and placed in dry ice. After day, the formed light yellow crystals of complex **3a** were separated by decanting of the mother liquor, washed with cold *n*-hexane and dried in *vacuo*. Yield: 0.536 g (61.5 %). M.p. 136-137°C (under Ar). Elemental analysis calcd (%) for C₂₂H₂₉ClZr: C 62.89; H 6.96%; found: C 62.81; H 6.97%. ¹H NMR (C₆D₆, 297 K, δ): 1.21 (s, 18H, CMe₃); 6.24 (s, 10H, Cp); 6.48 (s, 1H, C=CH). ¹³C NMR (C₆D₆, 297 K, δ): 28.4 (CMe₃); 31.3 (CMe₃); 32.1

(CMe₃); 42.2 (CMe₃); 83.4, 99.8 (C≡C); 113.3 (C=CH); 114.0 (Cp); 206.8 (ZrC). Raman spectrum (cm⁻¹): 2196 (ν C≡C). MS (70 eV, *m/z*): 418 [M]⁺; 382 [M-HCl]⁺; 361 [M-^tBu]⁺; 255 [Cp₂ZrCl]⁺; 220 [Cp₂Zr]⁺.

Protolysis of complex 1b and synthesis of 3b. Complex **1b** (0.561 g, 1.19 mmol) was dissolved in *n*-hexane (25 ml) at 60°C, and the resulting light yellow solution was treated with a 4M solution (0.26 ml, 1.2 mmol) of HCl in dioxane at room temperature with active stirring. After 1-2 min, the solution was evaporated *in vacuo* to dryness and the obtained residue was extracted with *n*-hexane (15 ml) at 50°C. Then, the resulting solution was filtrated and placed in the refrigerator at -15°C. After 1 day, the deposited crystals were separated from the solution by the decanting of the mother liquor, washed with cold *n*-hexane and dried *in vacuo*. Yield of **3b**: 0.356 g (59 %). M.p. 144-145°C (under Ar). Elemental analysis calcd (%) for C₂₂H₂₉ClHf: C 52.08%; H 5.76%; found: C 52.12; H 5.81%. ¹H NMR (C₆D₆, 297 K, δ): 1.22 (s, 9H, CMe₃); 1.24 (s, 9H, CMe₃); 6.15 (s, 10H, Cp); 6.70 (s, 1H, C=CH). ¹³C NMR (C₆D₆, 297 K, δ): 28.4 (CMe₃); 31.4 (CMe₃); 32.1 (CMe₃); 42.8 (CMe₃); 83.6, 100.3 (C≡C); 113.0 (Cp); 113.9 (C=CH); 214.4 (HfC). Raman spectrum (cm⁻¹): 2196 (ν C≡C). MS (70 eV, *m/z*): 508 [M]⁺; 493 [M-Me]⁺; 473 [M-Cl]⁺; 451 [M-^tBu]⁺; 415 [M-^tBu-HCl]⁺; 345 [Cp₂HfCl]⁺.

Protolysis of complex 1a and synthesis of 4. Complex **1a** (1.20 g, 3.13 mmol) was dissolved in toluene (10 ml), and the resulting yellow-brown solution was treated with a 4M solution (1.36 ml, 6.26 mmol) of HCl in dioxane at room temperature which resulted in the immediate deposition of a colorless precipitate and discoloration of the solution. After 1-2 min, the solution was evaporated *in vacuo* during 4 h with solvent trap. By the NMR, the obtained residue is Cp₂ZrCl₂. The solution in the trap was evaporated by an Ar stream which led to pure **4**. Yield: 0.32 g (62.3 %). M.p. Elemental analysis calcd (%) for C₁₂H₂₀: C 87.73; H 12.27%; found: C 87.61; H 12.08%. ¹H NMR (C₆D₆, 297 K, δ): 0.84 (s, 9H, ^tBu), 1.25 (s, 9H, ^tBu), 5.51 (d, ²J = 16.2 Hz, CH); 6.15 (d, ²J = 16.1 Hz, CH). ¹³C NMR (C₆D₆, 297 K, δ): 28.1 (CMe₃); 29.0 (CMe₃); 31.3 (CMe₃); 33.6 (CMe₃); 78.7, 97.3 (C≡C); 106.4, 153.0 (C=C). MS (70 eV, *m/z*): 164 [M]⁺.

*Protolysis of complex **1b** and synthesis of **4**.* Was used a procedure for the compound **1a** presented above.

*Reaction of complex **6** with **4**, synthesis of **5**.* Complex **6** (0.377 g, 0.81 mmol) and enyne **4** (0.135 g, 0.82 mmol) were dissolved in THF (1.5 ml). After 1 day, the light green-yellow solution was evaporated *in vacuo* to dryness, and the obtained residue was extracted with *n*-hexane (15 ml) at 60°C. The warm solution was filtered and placed in in refrigerator at -40°C. After 2 days, the deposited yellow crystals of **5** were separated from the solution by the decanting of the mother liquor, washed with cold *n*-hexane and dried *in vacuo*. The mother liquor was evaporated to 8 ml and placed in a refrigerator at -40°C which afforded additional crop of **5**. Yield: 0.231 g (74.0 %). M.p. 171-173°C (with dec., under Ar). Elemental analysis calcd (%) for C₂₂H₃₀Zr: C 68.51; H 7.84%; found: C 68.76; H 7.87%. ¹H NMR (C₆D₆, 297 K, δ): 1.29 (s, 9H, CMe₃); 1.34 (d, ²J = 14.9 Hz, CH); 1.42 (s, 9H, CMe₃); 4.42 (d, ²J = 14.9 Hz, CH); 5.03 (s, 5H, Cp); 5.42 (s, 5H, Cp). ¹³C NMR (C₆D₆, 297 K, δ): 33.1 (CMe₃); 33.5 (CMe₃); 34.7 (CMe₃); 36.2 (CMe₃); 87.4 (ZrC-C); 94.2 (ZrC-C); 100.3, 103.6 (Cp); 113.2 (ZrC=C); 160.9 (ZrC=C). Raman spectrum (cm⁻¹): 1621 (ν C=C=C). MS (70 eV, *m/z*): 384 [M]⁺; 220 [Cp₂Zr]⁺.

*One-pot synthesis of complex **5** from complex **1a**.* Complex **1a** (0.553 g, 1.44 mmol) was dissolved in *n*-pentane (7-8 ml), and the resulting light yellow solution with undissolved residue was treated with a 4M solution (0.75 ml, 3.0 mmol) of HCl in dioxane at room temperature with stirring, which resulted in the immediate deposition of a colorless precipitate and discoloration of the solution. The solution was evaporated by an Ar stream at room temperature. After 3 h, magnesium turnings (0.040 g, 1.65 mmol) and THF (10 ml) were added under Ar to the above residue, and the obtained mixture was stirred at room temperature. After 1 day, the resulting dark solution contained 60% of complex **5** according to ¹H NMR spectrum.

*Crystal data for **3b**.* Single-crystal X-ray diffraction experiments of **3b** were carried out with Bruker APEX-II CCD diffractometer. The crystal was kept at 120 K during data collection. Using Olex2,^{S4} the

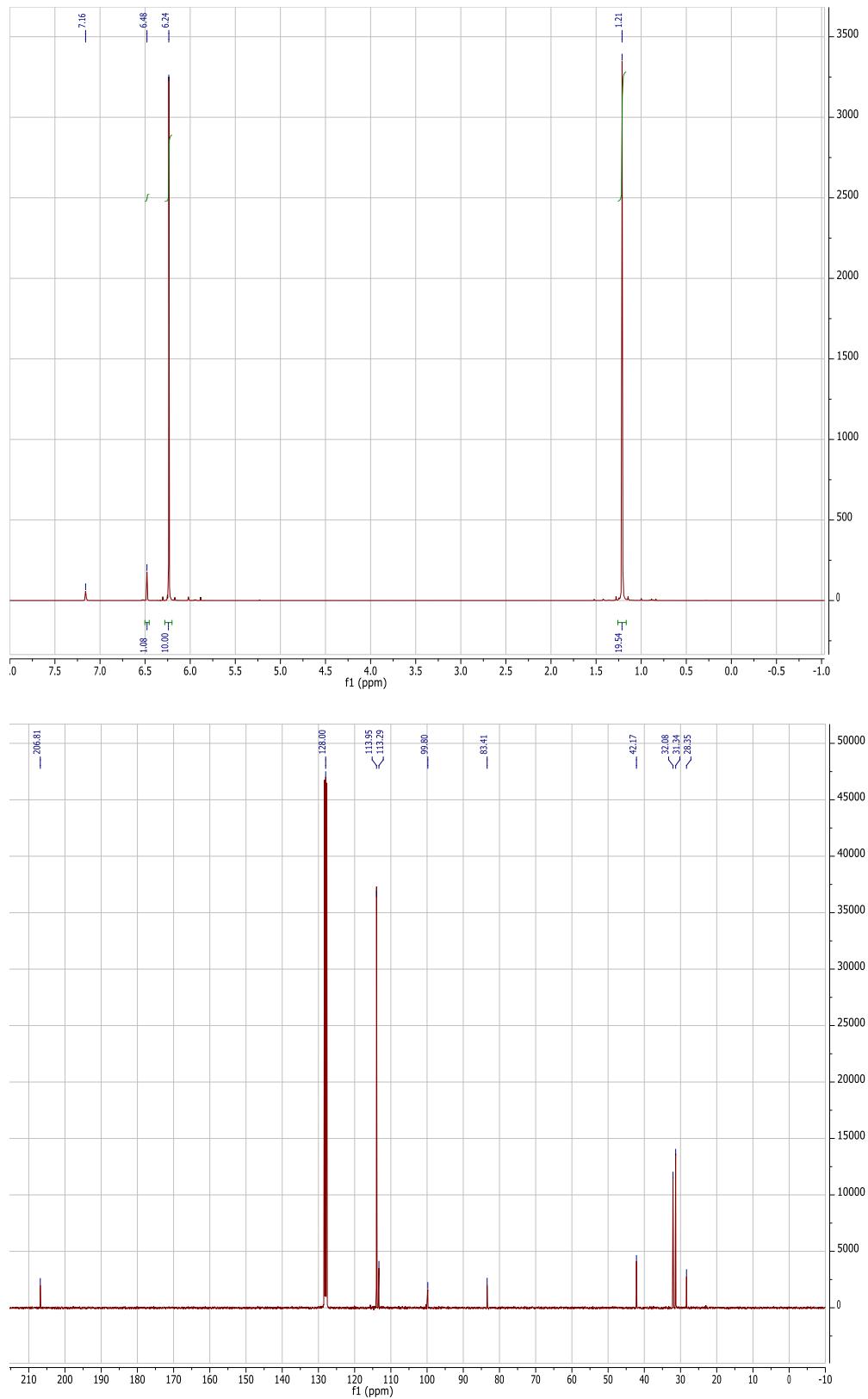
structure was solved with the SHELXT^{S5} structure solution program using Intrinsic Phasing and refined with the XL^{S6} refinement package using Least Squares minimisation.

CCDC 2277259 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

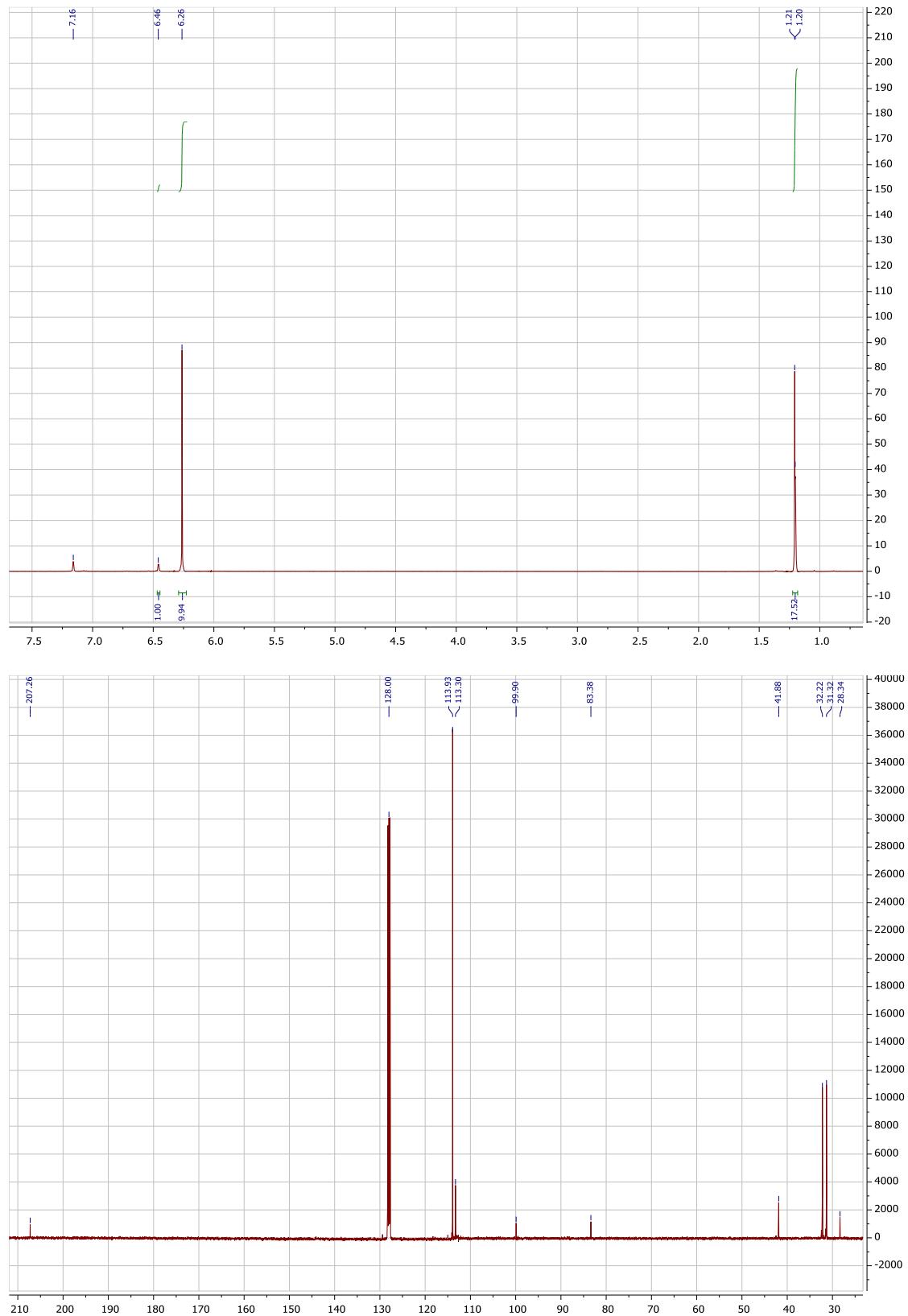
References

S1 U. Rosenthal, A. Ohff, W. Baumann, R. Kempe, A. Tillack and V. V. Burlakov, *Angew. Chem.*, 1994, **106**, 1678 (*Angew. Chem., Int. Ed.*, 1994, **33**, 1605).

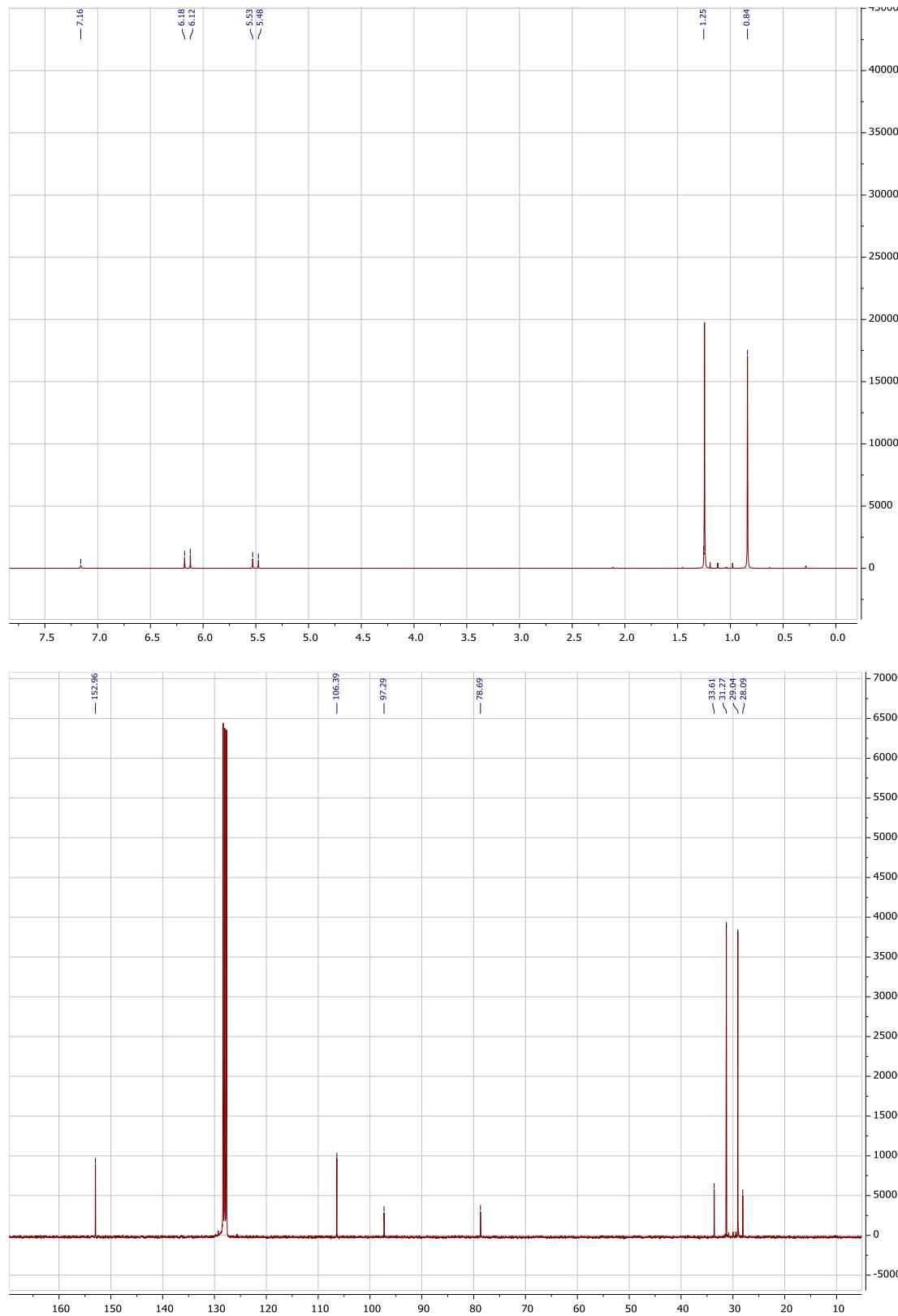
S2 V. V. Burlakov, T. Beweries, V. S. Bogdanov, P. Arndt, W. Baumann, P. V. Petrovskii, A. Spannenberg, K. A. Lyssenko, V. B. Shur and U. Rosenthal, *Organometallics*, 2009, **28**, 2864.

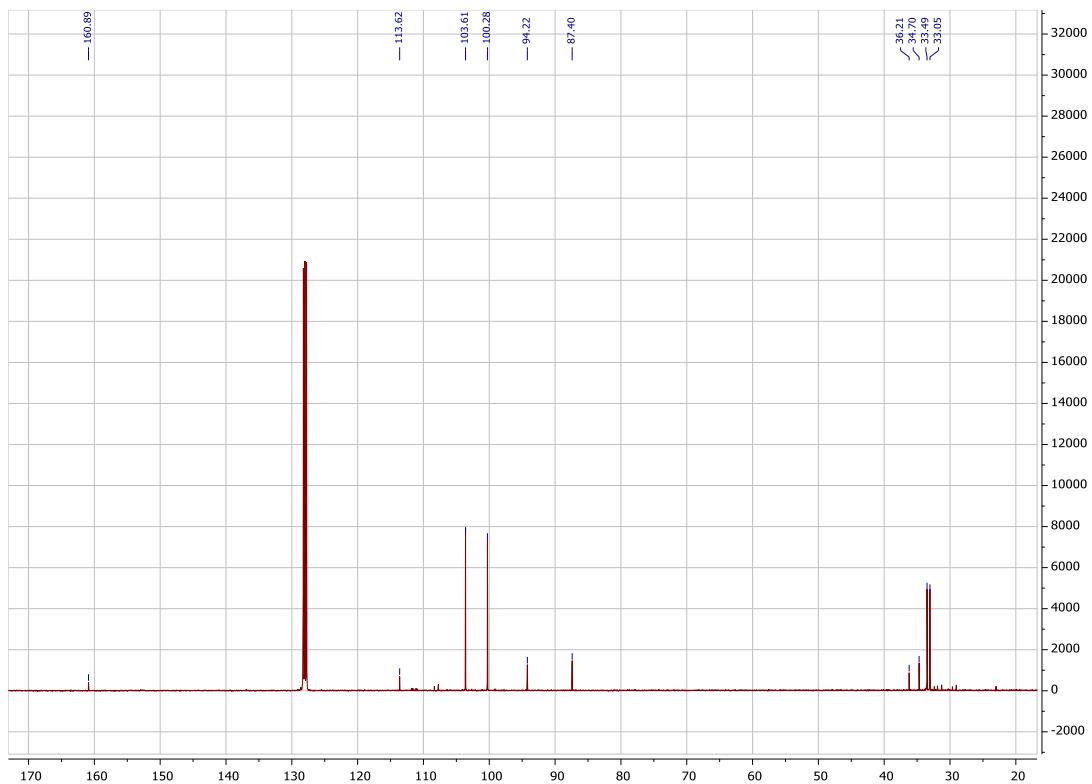
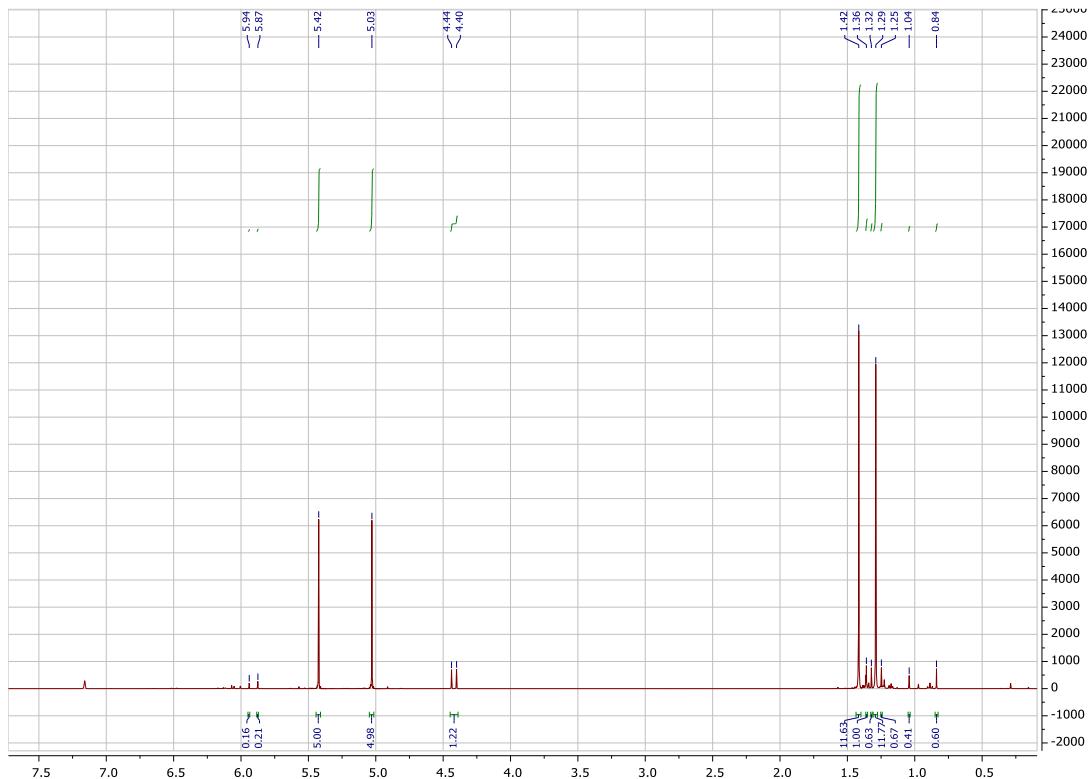

S3 U. Rosenthal, A. Ohff, M. Michalik, H. Görls, V. V. Burlakov and V. B. Shur, *Angew. Chem.*, 1993, **105**, 1228 (*Angew. Chem., Int. Ed.*, 1993, **32**, 1193).

S4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339.


S5 G. M. Sheldrick, *Acta Crystallogr.*, 2015, **C71**, 3.

S6 G. M. Sheldrick, *Acta Crystallogr.*, 2008, **A64**, 112.


¹H and ¹³C NMR spectra of **3a**



¹H and ¹³C NMR spectra of **3b**

¹H and ¹³C NMR spectra of 4

¹H and ¹³C NMR spectra of **5**

