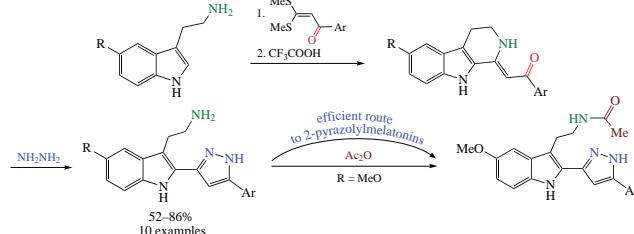


β-Carbolines as intermediates in indirect heteroarylation of tryptamines exemplified by the synthesis of 2-pyrazolyltryptamines

Alexander A. Zubenko,^a Lyudmila N. Divaeva,^b Anatolii S. Morkovnik,^{*b} Vadim S. Sochnev,^b Oleg P. Demidov,^c Viktoriya V. Chekrysheva,^a Alexander I. Klimenko^a and Alexandra E. Svyatogorova^a

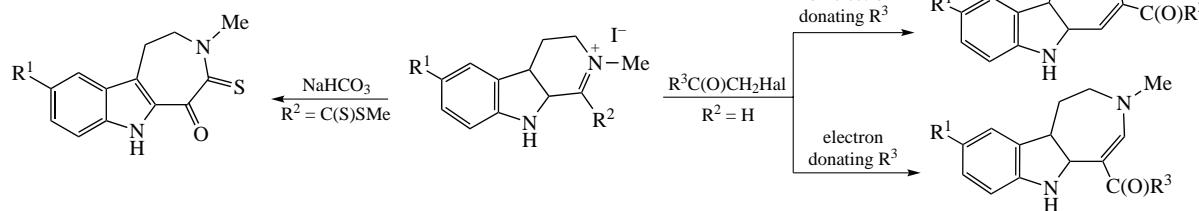

^a North-Caucasian Zonal Research Veterinary Institute, Federal Rostov Agricultural Research Centre, 346406 Novocherkassk, Russian Federation

^b Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation. E-mail: asmorkovnik@sfedu.ru

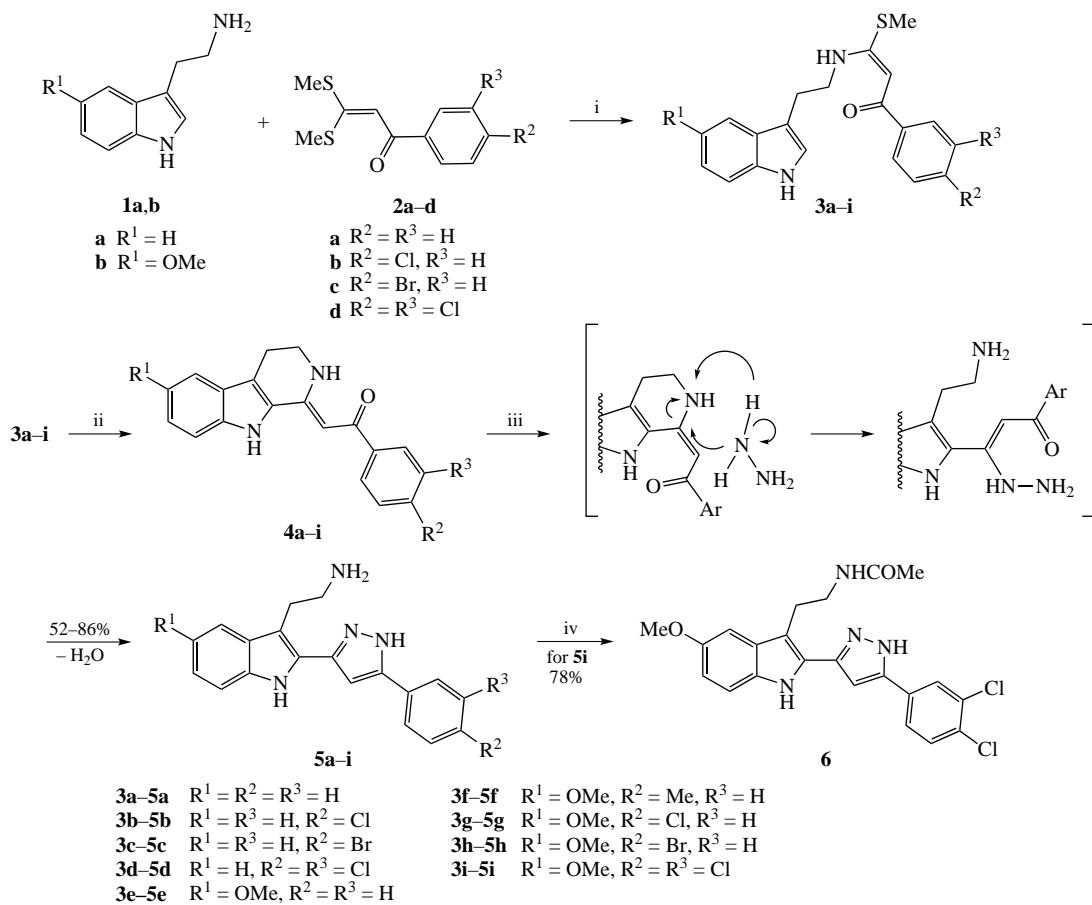
^c North-Caucasus Federal University, 355009 Stavropol, Russian Federation

DOI: 10.1016/j.mencom.2023.09.018

A cyclization–recyclization pathway for indirect 2-heteroarylation of tryptamines has been suggested by the example of introducing the pyrazolyl moiety. The process involves the intermediate cyclization of tryptamines into push–pull type β-caroline semi-products. The relative stability of the tautomeric forms of 2-pyrazolyltryptamines has been estimated using the DFT method.



Keywords: tryptamines, 1-arylmethylidene-1,2,3,4-tetrahydro-β-carbolines, β-carbolines, recyclization, 2-(pyrazol-3-yl)tryptamine, 2-(pyrazol-3-yl)-O-methylserotonin, pyrazolylmelatonin, quantum chemical calculations.

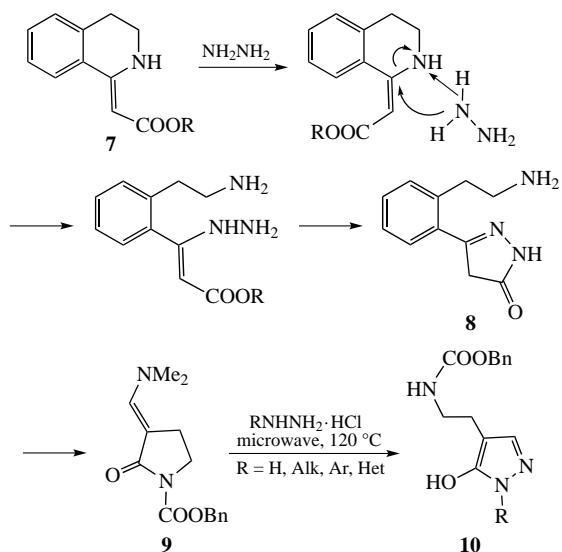

β-Carbolines possess diverse biological activity^{1–3} and play important role in plant metabolism. They can be also interesting as synthons for obtaining derivatives of other cyclic systems with a smaller or larger number (dimension) of fused rings.^{4–6} Essentially electrophilic 3,4-dihydro-β-carbolines are susceptible for nucleophilic opening of the hydrogenated pyridine ring, which provides some potential for various kinds of recyclizations, for example, of the particularly attractive ANRORC-type ones.

Two of such recyclizations involving quaternary salts of 3,4-dihydro-β-carbolines with expansion of the six-membered hetero ring to a seven-membered one were suggested as efficient methods for the synthesis of novel 4- and 5-(hetero)aryl derivatives as well as oxothioxo derivatives of 1,2-dihydroazepino[4,5-*b*]indoles (Scheme 1).^{4,5,7,8} In these transformations, the indole bicyclic and the 2-aminoethyl group of the opened tryptamine form participate in building the new heterocyclic ring. An alternative recyclization route is also possible, when a new hetero ring is constructed from the 2-positioned acyl group of the open form and the proper reagent thus leading to 2-heteroaryltryptamines.

The present work demonstrates the possibility of these types of recyclizations as well as their use as a key step in the indirect heteroarylation of tryptamines at position 2. It also describes the transformation of simplest tryptamines **1a,b** (that are alkaloids^{9–11} and important endobiotics¹²) into 2-pyrazolyltryptamines representing a new structural variant of indole-pyrazole hybrids.¹³ The initial step of pyrazolylation (Scheme 2) is the well-known^{6,14} and readily occurring two-step cyclization of tryptamines involving *N*-substitution of the methylthio group in *S,S*-dimethylacetals of *C*-acylketenes **2a–d** by the action of these amines and actual cyclization of the substitution products **3a–i** into push–pull type carbolines¹⁵ **4a–i**. To convert these carbolines into pyrazolyl derivatives of tryptamines, we used the recyclization discovered in this work, which is new for the β-caroline series and follows the alternative route with participation of hydrazine. The products are the representatives of new 2-[pyrazol-3(5)-yl]tryptamines **5a–i** and, in particular, 2-(pyrazol-3-yl)-O-methylserotonin **5e–i**. The reaction occurs by refluxing (6 h) carbolines with a small excess of hydrazine hydrate in *n*-propanol (see Scheme 2). The yields of compounds **5a–e,g–i** are 69–86%, whereas in the case of compound **5f** the yield is significantly

Scheme 1

Scheme 2 Reagents and conditions: i, see refs. 14, 15; ii, CF_3COOH , 40–45 °C, 3 h, 20–55 °C, 24 h; iii, NH_2NH_2 , $PrOH$, 6 h; iv, Ac_2O , 50–60 °C, 10 min.


lower, 52%. This may be due to a decrease in electrophilicity of CO group of substrate **4f** due to the hyperconjugation +M-effect of the *para*-positioned CH_3 group. One of the *O*-methylserotonins thus obtained, **5i**, was converted into the corresponding 2-(pyrazol-3-yl)melatonin **6** as an example.

Like the recyclization of 1-(alkoxycarbonyl)methylidene-3,4-dihydroisoquinolines of type **7** to β -[*o*-(oxopyrazolyl)phenyl]-ethylamines of type **8** that we reported recently¹⁶ (Scheme 3), the reaction outlined in Scheme 2 is most likely to begin with the cleavage of the hydrogenated pyridine ring by the nucleophilic substitution mechanism of the hydrazino-deamination reaction type. There is also a certain analogy with another recyclization, but in the monocyclic series, namely, that of pyrroles **9** to *N*-benzyloxycarbonyl-2-(pyrazol-4-yl)ethylamines **10**.¹⁷

The structures of compounds **5** and **6** were confirmed by 1H , ^{13}C NMR and HRMS methods. Quantum chemical calculations for the simplest pyrazolyltryptamine **5a** (DFT, B3LYP/6-311G**, see Online Supplementary Materials) show that of its two pyrazole tautomers, the 3-aryl-5-indolyl one is noticeably more stable. Both tautomers have two conformers each, and all the four tautomer-conformer forms have considerable π -conjugation, judging by the relatively small dihedral angles ϕ between the planes of the two heteroarene systems and the pyrazole and benzene rings (within ~7 to 35°). An argument in favor of this can be provided by the calculated data for biphenyl, in which, with $\phi = 38^\circ$, a fairly significant conjugation of the two rings is still preserved with a stabilization energy of about 10 kcal mol⁻¹.¹⁸ The total E_{tot}^{calc} energies of the 3-aryl-5-indolyl tautomer conformers have values of -953.9016596 (the conformer with the smallest ϕ angles) and -953.8971979 atomic units; the corresponding E_{tot}^{calc} values for the 5-aryl-3-indolyl tautomer are -953.8973086 and -953.8972140 atomic units.

Thus, the difference in the energies of the most stable conformers of the two tautomeric forms is 2.7 kcal mol⁻¹.

Prediction of the biological activity of pyrazolylmelatonin **6** and its analog containing no chlorine atoms using the PASS program¹⁹ shows that such compounds should primarily be ligands for various kinds of kinases, for example, inhibitors of platelet-derived growth factor receptor tyrosine kinase (PDGF-R). They may also be of interest as possible agents for the treatment of CNS diseases, as well as cystic fibrosis – by modulating the activity of the transmembrane regulator of cystic fibrosis.

Scheme 3

In summary, using pyrazolylation as an example, the feasibility of indirect 2-heteroarylation of tryptamines by the cyclization–recyclization scheme, with intermediate formation of push–pull β-carboline structures, was herein demonstrated.

The synthetic part of this work was performed at the North Caucasian Zonal Veterinary Research Institute, a branch of the Federal State Budgetary Scientific Institution ‘Federal Rostov Agricultural Scientific Center’ (program for fundamental studies of State Academies of Sciences for 2013–2022, project no. 0710-2019-0044). Quantum-chemical calculations, NMR studies (Center of collective use ‘Molecular Spectroscopy’), their interpretation, synthesis of compounds **3** and preparation of the author’s version of the article were performed at the Southern Federal University (State assignment in the field of scientific activity, project no. FENW-2023-0011). High-resolution mass spectra were recorded at the North Caucasus Federal University.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.09.018.

References

- 1 C. E. Puerto Galvis and V. V. Kouznetsov, in *Studies in Natural Products Chemistry*, ed. H. E. Atta-ur Rahman, Elsevier, 2018, vol. 56, pp. 1–51.
- 2 B. Luo and X. Song, *Eur. J. Med. Chem.*, 2021, **224**, 113688.
- 3 A. Hegazy, S. H. Mahmoud, Y. Elshaier, N. M. Abo Shama, N. F. Nasr, M. A. Ali, M. El Shazly, I. Mostafa and A. Mostafa, *Sci. Rep.*, 2023, **13**, 1612.
- 4 A. A. Zubenko, A. S. Morkovnik, L. N. Divaeva, V. G. Kartsev, G. S. Borodkin and A. I. Klimenko, *Mendeleev Commun.*, 2018, **28**, 83.
- 5 A. A. Zubenko, A. S. Morkovnik, L. N. Divaeva, V. G. Kartsev, A. A. Anisimov and K. Yu. Suponitsky, *Russ. J. Org. Chem.*, 2019, **55**, 74 (*Zh. Org. Khim.*, 2019, **55**, 100).
- 6 A. Avadhani, P. Iniyavan, A. Acharya, V. Gautam, S. Chakrabarti and H. Ila, *ACS Omega*, 2019, **4**, 17910.
- 7 A. A. Zubenko, V. G. Kartsev, A. S. Morkovnik, L. N. Divaeva and K. Yu. Suponitsky, *ChemistrySelect*, 2016, **1**, 2560.
- 8 A. A. Zubenko, V. S. Sochnev, V. G. Kartsev, L. N. Divaeva, O. P. Demidov, A. I. Klimenko, A. N. Bodryakov, M. A. Bodryakova, G. S. Borodkin and A. S. Morkovnik, *Mendeleev Commun.*, 2021, **31**, 545.
- 9 K. Trout, *Trout’s Notes on Some Simple Tryptamines: a Brief Overview & Resource Compendium*, Mydriatic Productions, 2002.
- 10 S. Negri, M. Comisso, L. Avesani and F. Guzzo, *J. Exp. Bot.*, 2021, **72**, 5336.
- 11 C. Giroud, T. van der Leer, R. van der Heijden, R. Verpoorte, C. E. M. Heeremans, W. M. A. Niessen and J. van der Greef, *Planta Med.*, 1991, **57**, 142.
- 12 *Trace Amines and Neurological Disorders*, eds. T. Farooqui and A. Farooqui, Elsevier, 2016.
- 13 K. Fabitha, M. Chandrakanth, R. N. Pramod, C. G. Arya, Y. Li and J. Banothu, *ChemistrySelect*, 2022, **7**, e202201064.
- 14 C. Sriparna, P. Kausik, I. Hiriyakkanavar and J. Hiriyakkanavar, *Synlett*, 2005, 309.
- 15 D. V. Dar’in and P. S. Lobanov, *Russ. Chem. Rev.*, 2015, **84**, 601.
- 16 A. A. Zubenko, A. S. Morkovnik, L. N. Divaeva, V. S. Sochnev, O. P. Demidov, L. N. Fetisov, N. O. Andros, A. E. Svyatogorova and A. I. Klimenko, *Mendeleev Commun.*, 2023, **33**, 203.
- 17 L. Yet, in *Comprehensive Heterocyclic Chemistry IV*, eds. D. Black, J. Cossy and C. V. Stevens, Elsevier, 2022, vol. 4, pp. 1–112.
- 18 L. Zhang, G. H. Peslherbe and H. M. Muchall, *Can. J. Chem.*, 2010, **88**, 1175.
- 19 D. A. Filimonov, D. S. Druzhilovskiy, A. A. Lagunin, T. A. Gloriozova, A. V. Rudik, A. V. Dmitriev, P. V. Pogodin and V. V. Poroikov, *Biomed. Chem.: Res. Methods*, 2018, **1**, e00004.

Received: 12th April 2023; Com. 23/7150