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Pyridazin-3(2H)-ones and their 4,5-dihydro analogues are 
valuable scaffolds in druggable synthetic molecular architectures, 
attracting considerable and lasting attention from organic and 
medicinal chemists.1 4,5-Dihydropyridazin-3(2H)-one motif 
is present in compounds that exhibit anti-tubercular2 and 
antibacterial activities3 as well as enzyme inhibitors, including 
Siguazodan, a selective phosphodiesterase inhibitor,4 and 6-vinyl-
4,5-dihydropyridazin-3(2H)-one derivatives being a highly 
potent COX-2 inhibitors.5 Several pharmaceutically active 
compounds, such as Indolidan, Pimobendan and Levosimendan, 
actively used to treat heart failure, contain the 4,5-dihydro-
pyridazin-3(2H)-one core.6 The selective installation of various 
substituents on the 4,5-dihydropyridazin-3(2H)-one backbone, 
leading to broad substitution patterns, represents a current 
challenge for the modulation of biological properties.7,8 Although 
several methods allow the preparation of functionalized 
4,5-dihydropyridazin-3(2H)-ones,9 the installation of 
phosphonate groups is scarce. Among the most relevant 
examples are 4-diethoxyphosphoryl-4,5-dihydropyridazin-
3(2H)-one derivatives described by Albrecht et al.10 

To our knowledge, the synthesis of 4,5-dihydropyridazin-
3(2H)-ones bearing a 4-positioned phosphonomethyl group, 
which could contribute to extending the molecular diversity 
within this heterocycle family, remains a challenge. As part of  
a research program devoted to synthesizing phosphono aza-
heterocyclic compounds,11 we herein describe a new approach 
towards 4-phosphonomethyl-containing 2,6-disubstituted- 
4,5-dihydropyridazin-3(2H)-one derivatives. Our methodology 
involves a two-step sequence for constructing one C-C and one 
C-N bond. 

The key phosphonomethyl-containing γ-keto esters were 
obtained using a one-pot method adapted from the report by 
Ballini et al.12 Indeed, conjugate addition of 1-nitroethane to 
allylphosphonate 1 in the presence of 1,8-diazabicyclo[5.4.0]-
undec-7-ene (DBU) allows the preparation of γ-keto ester 2a 
(90% yield) through the Michael addition–Nef conversion 

sequence (Scheme 1). This strategy can be also extended to 
propyl and benzyl nitro derivatives to obtain the corresponding 
phosphonomethyl-substituted γ-keto esters 2a-c in high yields. 

We next examined the transformation of γ-keto esters 2a-c 
into phosphonomethyl 4,5-dihydropyridazin-3(2H)-ones. We 
began our study by using γ-keto ester 2a as the model in reaction 
with hydrazine derivatives. No conversion of compound 2a was 
observed in EtOH at room temperature even after 48 h (Table 1, 
entry 1). Refluxing in ethanol proved necessary for the formation 
of 4,5-dihydropyridazin-3(2H)-one 3a in 88% yield (entry 2). 
Gratifyingly, addition of a catalytic (5 mol%) amount of acetic 
acid allowed completion of the cyclization in shorter reaction 
time (5 h instead of 8 h) to give pyridazinone 3a in good yield 
(entry 3). A further improvement was achieved using toluene and 
AcOH (5 mol%). Indeed, the reaction course could be shortened 
to 3 h (entry 4). Finally, the combination toluene–AcOH was 
revealed to be the most suitable one for the reaction of methyl- 
and phenylhydrazines with keto ester 2a (entries 5 and 6) to 
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An expedient access to novel 4-phosphonomethyl-containing 
2,6-disubstituted 4,5-dihydropyridazin-3(2H)-ones involves 
the reaction of bb  -phosphono  gg  ′-keto ester intermediates with 
hydrazines. The construction of the pyridazinone ring allows 
the installation of various substituents at the positions 2 
and 6 as well as a valuable 4-positioned phosphonomethyl 
fragment.

Keywords: pyridazin-3(2H)-ones, phosphonates, nitroalkanes, γ-keto ester, Michael addition, Nef reaction.

R1 NO2CO2Et

PO(OEt)2

CO2Et

PO(OEt)2
R1

O

1

a R1 = Me 
b R1 = Et 
c R1 = Ph

2a−c

ii

H2N N

R2

H
N

N O

R2

R1 PO(OEt)2

3a−c

i
82−90%

a R2 = H 
b R2 = Me 
c R2 = Ph

for 2a

Scheme  1  Reagents and conditions: i, DBU, MeCN, room temperature, 
16 h, then 60 °C, 16 h; ii, for conditions and yields, see Table 1.
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afford pyridazinones 3b,c in 86 and 81% yields, respectively. It 
is worthy to note that large excess of hydrazine, a condition 
often used in such condensation, was not required, and the use 
of 1.2 equiv. of hydrazines was more than sufficient.

Keto esters 2a-c were then reacted with some other hydrazine 
derivatives under the optimized reaction conditions to afford 
a  new family of 4-phosphonomethyl-4,5-dihydropyridazin-3-
ones 3a-j in good yields (Scheme 2).

Although 2-hydroxy- and 2-cyanoethylhydrazines formed 
4,5-dihydropyridazin-3-ones 3i,j in good yields, other 
functionalized hydrazine derivatives such as 4-nitrophenyl- or 
3,5-dichlorophenylhydrazines did not furnish the expected 
products with keto esters 2a,b. In these cases, several by-
products were formed, including acyclic hydrazones through 
partial degradation during purification. We also noticed that 
under these reaction conditions, hydrazide derivatives such as 
2-phenylaceto or benzenesulfono hydrazides did not form the 
expected 4,5-dihydropyridazin-3-ones. These findings may be 
explained by the effect of the electron-deficient substituent 
which reduces the nucleophilicity of the neighbouring nitrogen 
atom preventing the cyclization process.

NMR and HRMS data are consistent with the obtained 
product structures. 31P{1H}-NMR spectra show a single signal 
around 29.29-29.90 ppm indicating that the products are pure. 
13C NMR spectra contained doublets around 23.05-27.35 ppm 
showing the coupling between phosphorus and carbon in 
α-position with a coupling constant 1JC-P = 143.2-159.7 Hz. 
Due to the coupling of non-equivalent protons both with each 
other and with phosphorus, the 1H NMR spectrum appears 
complicated.

In summary, we have described a synthetic approach to the 
preparation of a novel family of phosphonomethyl-containing 
2,6-disubstituted-4,5-dihydropyridazin-3(2H)-ones. The synthetic 

method was based on the preparation of γ-keto ester intermediates 
from nitroalkanes and allylphosphonate precursors. Construction 
of the 4,5-dihydropyridazin-3(2H)-one ring was achieved using 
various hydrazines. Optimized conditions, using toluene as the 
solvent and AcOH (5%) as an additive, provided the application 
of nearly equivalent amounts of hydrazines. Studying the 
reactivity and evaluating the biological activity of the synthesized 
4,5-dihydropyridazin-3(2H)-ones will be the subject of ongoing 
studies.
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Table  1  Preparation of 4,5-dihydropyridazin-3-ones 3a-c from keto ester 2a.

Entry Hydrazine Conditions t / h Product Yield (%)

1 H2NNH2 EtOH, ~ 25 °C 48 - -
2 H2NNH2 EtOH, reflux   8 3a 88
3 H2NNH2 EtOH, AcOHa, reflux   5 3a 86
4 H2NNH2 PhMe, AcOHa, reflux   3 3a 88
5 H2NNHMe PhMe, AcOHa, reflux   3 3b 86
6 H2NNHPh PhMe, AcOHa, reflux   3 3c 81

a 5 mol% to reactant 2a.
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Scheme  2  Reagents and conditions: i, AcOH (5 mol%), toluene, reflux, 3 h.




