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General Remarks

All manipulations for the synthesis, isolation, and sample preparation for physicochemical studies
were carried out in vacuo and under a high-purity argon atmosphere using the Schlenk technique.
All reagents and solvents were obtained from commercial sources and dried by using standard
procedures before use. The H, 13C, and 3P NMR spectra were measured on a Bruker AV 300 and
Bruker AV 400 instruments at 298 K. The IR spectra of the synthesized compounds were recorded
on a FSM 1201 in the range from 4000 to 400 cm™. The absorption spectra were recorded with a
Perkin-Elmer Lambda 25 spectrometer. The elemental analysis was performed on a Vario EL cube
automatic CHNS elemental analyzer (Elementar Analysen systeme GmbH) using helium (6.0
grade) as the carrier gas. The content of P was determined from the dry residue during pyrolysis
with a gravimetric completion, the content of halogen was determined during pyrolysis with a silver
grid. Mass chromatograms were recorded on a Polaris Q/Trace GC Ultra chromatographic mass
spectrometer with a TR-5MS capillary chromatographic column 60 m long and 0.25 mm in
diameter at an ionizing electron energy of 70 eV in the mass number range of 40-700. Differential
Scanning Calorimetry study was performed in the temperature range of 20-300 °C with a
DSC204F1 Phoenix differential scanning calorimeter (Netzsch Geratebau, Germany). The
reliability of the operation of the calorimeter was tested using standard calibration experiments for
measurements of thermodynamic characteristics of the melting of n-heptane, mercury, indium, tin,
lead, bismuth, and zinc. The calorimetric measurements of the complexes were carried out in a
highly pure nitrogen atmosphere at a heating rate of 10°C-min 1,

Cyclic Voltammetry

Electrochemical behavior of the compounds has been investigated using the Corrtest CS300
potentiostat/galvanostat (China) equipped with standard three electrode cell. Glassy carbon disk (1
mm) was used as working electrode, a non-aqueous Ag/AgNOs was served as reference electrode,
and a Pt wire as the counter electrode. 0.1 M [BusN][PFe] was used as supporting electrolyte. All
electrochemical measurements were carried out under Ar atmosphere at a scan rate 100 mV s,

X-ray Crystallography

The X-ray diffraction data for complexes 5-8 were collected on a Rigaku OD Xcalibur E
diffractometer (MoKa radiation, w-scan technique, A = 0.71073 A). The intensity data for all
compounds were integrated by CrysAlisPro program [S1]. An absorption correction was introduced
by SCALE3 ABSPACK algorithm. All structures were solved by dual method [S2] and refined on
F7, using SHELXTL package [S3]. All non-hydrogen atoms were refined anisotropically. All
hydrogen atoms were refined using a riding model (Uiso(H) = 1.5Ueq(C) for CHz-group and Uiso(H)
= 1.2Ueq(C) for other groups). The structures 6 and 8 exhibit disorder of the 2-thiophen-2-yl
substituents. Identical anisotropic displacement parameters for pairs of disordered atoms were
received with EADP instruction. SADI, DFIX, SAME, FLAT and ISOR instructions were used to
refine disordered fragments of molecules. The structure of 8 was refined as a two-component non-
merohedral twin using the HKLF5 format data file; the twin ratio refined to 0.61/0.39.
CCDC 2255159-2255162 (5-8) contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk.
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Synthesis

(1E,2E)-1,2-Bis[1-(2-thienyl)propylidene]hydrazine (5).
Hydrazine hydrate (1.9 ml, 0.04 mol) was added to a solution of 1-(2-
thienyl)propan-1-one (11.24 g, 0.08 mol) and HOAc (0.2 ml, 3.0 mmol)

J | in ethanol (20 ml). The reaction mixture was stirred under reflux for 6

S N—N/ S hours. The azine solid was separated out on cooling, dried under
@_é vacuum and recrystallized from hexane. Yield 8.3 g (75%), yellow
crystals. Found (%): C, 60.79; H, 5.85; N, 10.12; S, 23.24. Calc. for

Ci14H16N2S2 (%): C, 60.83; H, 5.83; N, 10.14; S, 23.20. IR (Nujol, v,

cm™): 3096 w, 3068 w, 1887 w, 1810 w, 1744 w, 1685 w, 1573 s, 1518 w, 1421 m, 1350 w, 1286
w, 1233 m, 1057 5,998 w, 911 s, 850 s, 795 m, 744 w, 613 m, 468 m. *H NMR (300 MHz, CeDs, 3,
ppm, J, Hz): 1.10 (t, 3Jun = 7.6, 6H, CHa); 2.89 (q, *Jnn = 7.6, 4H, CHy); 6.60 — 7.07 (m, 6H, tph =
thiophene ring ). *C NMR (75 MHz, CsDs, 5, ppm): 12.11 (s, CHs), 22.55 (s, CH2), 127.15 (s, tph);
127.34 (s, tph); 128.74(s, tph); 144.21(s, Cipso, tph); 162.92 (s, C=N). MS (El, 70 eV), m/z (Irei (%)):
276.1 [M]" (35); 247.1 [M-Et]* (100); 166.2 [M-Et, -C4HsS]* (75); 138.2 [M/2]* (40). DSC
(10°C/min): m.p. 105 °C; Taec > 222 °C.

1,4-Dichloro-2,5-dimethyl-3,6-di(2-thienyl)-3a,6a-diaza-1,4-diphosphapentalene (6).

A Phosphorus trichloride (1.0 g, 7.2 mmol) was added dropwise to azine 5

[\ N/P | (1.0 g, 3.6 mmol) in an argon atmosphere. The reaction mixture was
7] N s_ heated at 80°C for 3.5 h until the end of the release of HCI. The resulting
4 | 4 solid was washed with dichloromethane and recrystallized from THF.

b Yield 0.95 g (65%), yellow crystals. Found (%): C, 41.52; H, 3.05; N,

6.86; P, 15.25. Calc. for C14H12CIoN2P2S2 (%): C, 41.49; H, 2.98; N, 6.91; P, 15.29. IR (Nujol, v,
cm1): 3089 w, 1576 s, 1502 m, 1422 w, 1367 m, 1350 m, 1315 m, 1293 m, 1233 m, 1173 s, 1123
m, 1082 w, 1051 m, 993 w, 979 m, 880 m, 849 m, 756 m, 744 m, 652 w, 640 w, 611 w, 501 w, 490
w, 470 w, 450 m. 'H NMR (300 MHz, CD:Cls, &, ppm, J, Hz): 2.18 (m, 6H, CH3), 7.26 (m, 2H,
tph), 7.52 (m, 2H, tph), 7.66 (m, 2H, tph). *H{3P} NMR (300 MHz, CDCl, &, ppm, J, Hz): 2.19
(s, 6H, 2 CHs), 7.26 (m, 2H, tph), 7.52 (m, 2H, tph), 7.66 (m, 2H tph). 3C{*H} (75 MHz, ds-THF,
8, ppm): 10.7-11.7 (m, CHs), 116.7-117.3 (m, CP), 127.5-127.6 (m, tph), 128.6 (s, tph), 129.3-129.8
(m, tph), 130.8-131.8 (m, tph), 138.52 (s, CN). 3LP{*H} (81 MHz, dg-THF, 5, ppm): 114.6 (s), 118.7
(s). MS (El, 70 eV), m/z (lrel (%)): 403.98 [M]* (10), 369.16 [M-CI]* (40), 334.19 [M-2CI]* (100).
UV-Vis, Ama/nm: (CH2Cl,): 270, 360. DSC (10°C/min): m.p. 216 °C; Tgec > 250 °C.

2,5-Dimethyl-3,6-di(2-thienyl)-3a,6a-diaza-1,4-diphosphapentalene (7).
A solution of dichloride 6 (0.41 g, 1.0 mmol) in THF (20 ml) was added

J\ N | to an excess of vacuum preheated magnesium powder (0.11 g, 4.5 mmol).
T W s, The suspension was stirred for 8 h. During the reaction, the colour of the
¥ \ 4/ solution turned dark red, then burgundy. The solvent (THF) was replaced

with toluene; MgCl, was filtered off, the solution was concentrated. The

precipitated burgundy crystals were recrystallized from THF. Yield 0.28 g, 83%. Found (%): C,
50.32; H, 3.65; N, 8.35; P, 18.48; S, 19.22; Calc. for C14H12N2P2S2 (%): C, 50.29; H, 3.62; N, 8.38;
P, 18.53; S, 19.18. 'H NMR (400 MHz, ds-THF, &, ppm, J, Hz): 2.5 (d, 3Jup = 13.9, 6H, CHs), 7.24
—7.65 (m, 6H, tph). 8C{*H} (100 MHz, dg-THF, §, ppm): 11.74 (d, Jcp = 29.4, CH3), 125.1 (dd, J
= 7.6, 2.7, CN), 125.9 (d, J = 3.1, tph), 127.07 (s, tph), 127.7 (d, J = 10, tph), 131.2 (d, J = 2.7,
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Cipso), 144.7 (dd, J = 46.2, 2.0, CP). 3'P{H} (81 MHz, ds-THF, 5, ppm): 192.15 (s). 3P (81 MHz,
de-THF, 8, ppm, J, Hz): 192.12 (q, 3Jp = 13.6). IR (Nujol, v, cm™): 1584 m, 1300 m, 1241 w,
1230 w, 1157 m, 1063 w, 1052 w, 994 w, 974 w, 937 w, 918 w, 897 w, 837 w, 815 w, 753 w, 706
m, 691 w, 676 m, 639 w, 611 w, 569 w, 561 w, 507 w, 486 w. MS (EI, 70 eV), miz (lrei (%)):
334.18 [M]*(100). UV-vis, Amax/nm: (CH2Cl,): 260, 340, 457. DSC (10°C/min): m.p. 122 °C, Taec >
162 °C.

Complex of 2,5-dimethyl-3,6-di(2-thienyl)-3a,6a-diaza-1,4-diphosphapentalene with 1,2,4,5-
tetracyanobenzene (8): A solution of TCNB (0.178 g, 1.0 mmol) in THF (15 ml) was added to a
solution of 7 (0.334 g, 1.0 mmol) in THF (20 ml). The mixture was left overnight at 0°C. Black
crystals of the product 8 were filtered and dried in vacuum. Yield 0.36 g, 70 %. Found (%): C,
56.30; H, 2.79; N, 16.36; P, 12.01; S, 12.48. Calc. for CosH14NeP2S. (%): C, 56.25; H, 2.75; N,
16.40; P, 12.09; S, 12.51. IR (Nujol, v, cm™): 3105 w, 3089 w, 3028 w, 2240 m, 2225 m, 1733 w,
1586 m, 1516 m, 1414 m, 1342 w, 1292 m, 1284 m, 1252 w, 1241 w, 1222 w, 1171 m, 1072 w,
1052 w, 981 w, 911 s, 863 m, 836 s, 756 m, 708 s, 636 w, 623 w, 591 w, 583 w, 568 w, 506 s, 488
m, 468 m. DSC (10°C/min): Tgec > 199.4 °C.

Figures

Figure S1. Molecular structures of 5. The top view (a) and side view (b). Thermal ellipsoids drawn
at the 30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths [A] and
angles [°]: N(1)-N(1A) 1.401(2), N(1)-C(1) 1.3005(14), S(1)-C(2) 1.7244(13), S(1)-C(5)
1.7039(14), C(1)-C(2) 1.4556(17), C(2)-C(3) 1.3756(17), C(3)-C(4) 1.4249(19), C(4)-C(5)
1.359(2); C(1)-N(1)-N(1A) 113.81(12), N(1)-C(1)-C(2) 115.63(11), C(2)-S(1)-C(5) 92.12(7).
Symmetry transformations used to generate equivalent atoms (A): -x+1,-y+1,-z+1.
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Figure S2. Molecular structures of 6. Thermal ellipsoids drawn at the 30% probability level.
Hydrogen atoms are omitted for clarity. Selected bond lengths [A] and angles [°]: P(1)-N(1)
1.7073(17), P(1)-C(1) 1.792(2), P(1)-CI(1) 2.1662(9), P(2)-N(2) 1.6964(17), P(2)-C(8) 1.801(2),
P(2)-ClI(2) 2.1798(9), N(1)-N(2) 1.412(2), C(1)-C(2) 1.353(3), C(8)-C(9) 1.351(3); N(1)-P(1)-C(1)
88.31(9), N(1)-P(2)-Cl(1) 104.14(7), C(1)-P(2)-CI(1) 99.46(8), N(2)-P(2)-C(8) 88.07(9), N(2)-P(2)-
Cl(2) 104.80(7), C(8)-P(2)-Cl(2) 96.56(7), C(9)-N(1)-N(2) 109.26(16), C(9)-N(1)-P(1) 131.55(14),
N(2)-N(1)-P(1) 113.57(13), C(2)-N(2)-N(1) 110.34(15), C(2)-N(2)-P(2) 134.23(14), N(1)-N(2)-
P(2) 115.37(13).

Figure S3. Fragment of the crystal packing of 7. Hydrogen atoms are omitted for clarity.
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Figure S4. Inter-stack short contacts in crystal 8 between D---A and A--*A molecules, lying in the
same plane.

Figure S5. Relative arrangement of layers of molecules in neighboring stacks AB in crystal 8.
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Figure S6. Theoretical molecular graph of the crystal packing fragment of the complex 8. Only the
critical points (3,-1) are given (blue color).

Table S1. The main topological characteristics of the electron density in complex 8:

Bond ‘;(.2’ [ZF-JG(:)’ \;(re), he(r), a.e. Bond p(r), a.e. Va[.’g)’ v(r), a.e. | he(r), a.e.
P(1)-N(1) 0.145 0.328 -0.258 -0.088 C(8)-C(10) 0.240 -0.374 -0.502 -0.298
P(1)-C(1) 0.179 | -0.045 | -0322 | -0.167 C(9)-C(11) 0.269 -0.528 -0.602 -0.367
P(2)-N(2) 0.145 | 0322 | -0.256 | -0.088 C(11)-S(2) 0.221 -0.359 -0.434 -0.262
P(2)-C(8) 0.178 | -0.044 | -0320 | -0.166 C(11)-c(12) 0.276 -0.493 -0.630 -0.377
N(1)-N(2) 0.307 -0.002 -0.802 -0.401 S(2)-C(14) 0.213 -0.313 -0.410 -0.244
N(1)-C(9) 0300 | -0.637 | -0.721 | -0.440 C(12)-C(13) 0.249 -0.390 | -0.532 -0.315
N(2)-C(2) 0.289 | -0.547 | -0.681 | -0.409 C(13)-C(14) 0.324 -0.758 | -0.813 -0.501

C(15)-C(21) | 0.268 | -0.486 | -0.598 | -0.360 C(15)-C(16) 0.301 0679 | -0.721 -0.445
N(3)-c(21) | 0.490 | -0.780 | -1.684 | -0.939 C(15)-C(20) 0.308 -0.699 -0.751 -0.463
N(4)-C(22) | 0.494 | -0.685 | -1.716 | -0.944 C(16)-C(17) 0.310 -0.717 -0.753 -0.466
c(16)-c(22) | 0.266 | -0.474 | -0592 | -0.355 C(17)-C(18) 0.309 -0.717 -0.753 -0.466
N(5)-C(23) | 0.496 | -0.774 | -1.718 | -0.956 C(18)-C(19) 0.297 -0.654 | -0.703 -0.433
C(18)-C(23) | 0.266 | -0.477 | -0591 | -0.355 €(19)-C(20) 0.312 0721 | -0.762 -0.471
C(19)-C(24) | 0.269 | -0.491 | -0.602 | -0.363 P(1)...5(2) 0.015 0.029 -0.008 0.000
N(6)-C(24) | 0.489 | -0.789 | -1.677 | -0.937 P(1)...C(15) 0.009 0.021 -0.004 0.001
C(1)-c(2) 0.308 | -0.676 | -0.749 | -0.459 P(2)..S(1) 0.020 0.033 -0.011 -0.002
C(1)-¢(3) 0241 | -0.375 | -0.505 | -0.299 P(2)...C(18) 0.010 0.022 -0.004 0.001
C(2)-C(4) 0.269 | -0.513 | -0.603 -0.365 N(3)...H(3A) 0.268 0.016 -0.002 0.001
C(4)-S(1) 0.230 | -0.409 | -0.461 | -0.282 N(5)...H(10B) 0.004 0.014 -0.002 0.001
C(4)-C(5) 0.269 | -0.461 | -0.606 | -0.361 C(2)...C(16) 0.007 0.023 -0.003 0.001
S(1)-C(7) 0212 | -0.307 | -0.409 | -0.243 C(3)...H(5A) 0.013 0.057 -0.009 0.003
C(5)-C(6) 0.293 | -0.603 | -0.690 | -0.420 C(9)...C(19) 0.006 0.019 -0.003 0.001
c(6)-C(7) 0337 | -0.836 | -0.866 | -0.538 C(10)..H(12A) | 0.011 0.044 -0.007 0.002
c(8)-C(9) 0.311 | -0.700 | -0.763 -0.469
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Infrared Spectra
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Figure S7. The region of C-H and C=N stretching vibrations for TCNB (black) and 8 (red).
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Figure S8. The region of deformation vibrations for TCNB (black) and 8 (red).
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Electronic Spectra.
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Figure S10. UV/VIS spectra of complex 8 in CH2Cl; at 293 K.
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Figure S11. Optical absorption spectrum of 7 in CH2Cl..
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Figure S12. UV/VIS spectra of complex 8 in Nujol at 293 K.
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NMR Spectra
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Differential scanning calorimetry.
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Figure S13. Differential scanning calorimetry of 5.
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Figure S14. Differential scanning calorimetry of 6.
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Figure S15. Differential scanning calorimetry of 7.
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Figure S16. Differential scanning calorimetry of 8.
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Theoretical electron density

In order to obtain the theoretical electron density of 8 a single-point calculations were performed by
DFT (B3LYP functional [S4-S6] with all electron 6-31G(d,p) basis sets [S7-S12] for all atoms via
the Crystall7 program [S13] using experimental parameters of cells and crystals symmetry. The
theoretical structural amplitudes (sinf/A = 1.155 A™) for 8 were calculated by the Crystal17 [S13].
Based on the calculated structural amplitudes, using the MoPro program [S14], the populations of
the spherically symmetric valence shell (Pva), and the multipole parameters (Pim) describing its
deformation were obtained together with the corresponding expansion — contraction coefficients (k,
k’) for each of the complex atoms. The obtained values of Pva, Pim, k and k' were used to construct
the theoretical electron density. Analysis of topology of experimental—theoretical p(r) function was
carried out using the WINXPRO program package [S15].
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