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s an accidental discharge of either crude or 
 the environment, predominantly into the ocean 
rs.1,2 This pollution caused by human activity 
ed as soon as possible to prevent damages to 

nt, human health, and economy.3–5 Mechanical, 
mal, and bioremediation techniques are mainly 
pill remediation; recently, an electrochemical 
o been studied. Sorbent materials (a mechanical 
 an ideal solution because of their low cost, 
, reusability, and fast and easy operation.6–9 

on sponges,10 mesoporous carbon materials,11 
bon aerogels12 have been studied as the sorbent 

gels are of considerable current interest due to 
density, large surface area, high porosity, high 
emical stability, and good mechanical properties, 
ich these materials have a great potential as 

sorbents.13,14 Graphene-based aerogels have 
rties and various applications,15,16 and they were 
estigated as oil adsorbents and demonstrated 
s.17 Among them are graphene aerogels (sorption 
2–105.93 g g–1),18,19 functionalized or doped 

gels like polyvinyl alcohol–graphene aerogel 
ities of 114–285 g g–1),20 N-doped graphene 
tion capacities up to 42 g g–1),21 graphene 
poly(dimethylsiloxane),22 hybrid or composite 
gels like graphene/carbon nanotube aerogels 
pacities of 30.5–501 g g–1),23–26 carbon fibers/
ene oxide aerogels (adsorption capacities up to 
7 and hollow carbon spheres/graphene aerogels 
acities up to 108 g g–1).28 Hybrid or composite 

gistically combined the individual properties of 
 obtain improved properties.

The purpose of this work was to obtain graphene/hollow 
carbon fiber composite aerogels for applications in oil spill 
cleanup. For their synthesis, suspensions of 50 mg of graphene 
oxide (GO) and hollow carbon fibers (2.5, 5.0, and 7.5 mg) 
obtained by pyrolysis of cotton at 700°C were prepared in 20 ml 
of water; then, a sonotrode (500 W, 20 kHz, 40% amplitude) 
was used for 30 min to form stable suspensions. Next, ascorbic 
acid (20 mg) was added, and the mixture was heated at 80 °C 
for 18 h without stirring to form a hydrogel (GO reduction 
reaction), which was lyophilized to obtain a corresponding 
aerogel (G-CF25, G-CF50, or G-CF75). Graphene aerogel 
without hollow carbon fibers (GA) was obtained for 
comparison. The adsorption tests were carried out in triplicate 
as indicated in the ASTM F726-99 standard.29 

The FTIR spectrum of graphene/hollow carbon fiber aerogels 
(G-CF) in Figure 1(a) has no characteristic bands corresponding 
to oxygen functional groups due to the successful reduction of 
GO and the carbonization of cotton fibers, which caused the 
absence of the characteristic functional groups of cellulose. 
Figure 1(b) shows the XRD patterns of all the materials, which 
contain peaks at 26°, 44.5°, and 81.5° corresponding to the 
(002), (100), and (110) planes, respectively, and these peaks 
correspond to a graphitic structure. The SEM micrographs  
shown in Figures 1(c) and 1(d) exhibit a three-dimensional and 
interconnected network, composed of graphene sheets with 
embedded randomly oriented hollow carbon fibers (CFs), which 
form a porous structure.

The nitrogen adsorption–desorption isotherms of type IV 
characteristic of mesoporous materials were obtained using a 
physisorption technique. Table 1 shows that the surface area 
increased upon adding CFs (G-CF50) to the pristine GA; 
however, the surface area decreased drastically with the 
amount of CFs (G-CF75) and became closer to that of CFs.
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onmental problems caused by the spill of oil 
anic liquids, we have developed graphene/
 fiber composite aerogels (G-CF) with a low 
hydrophobicity, buoyancy, and adsorption 
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The contact G-CF angles did not show important changes in 
the materials; however, an increase to 120° was observed in the 
G-CF75 sample [Figure 2(a)]. According to Figure 2(b), only the 
G-CF50 sample showed a notable increase in adsorption capacity 
due to its high surface area of 313.087 m2 g–1, as compared to 
that of GA (153.248 m2 g–1). 

Figure 2(c) shows the results of reusability tests for G-CF50. 
The sample exhibited a stable behavior throughout ten 
adsorption–combustion cycles upon adsorbing ethanol and 
retained 94.4% of the initial adsorption capacity in the tenth 
cycle. On the other hand, when adsorbing oil, a noticeable 
decrease in the adsorption capacity to 29.6% was observed in the 
tenth cycle. A retained fraction of the adsorbed oil formed a film, 
which decreased the surface area and pore size of the material to 
result in a lower adsorption capacity.

In conclusion, G-CF50 exhibited the highest adsorption 
capacity of 42.7 g g–1, 20.28% higher than that of GA, due to its 
high surface area of 313.087 m2 g–1, hydrophobicity, and porous 
structure. This material presented excellent reusability for 
ethanol adsorption with a stable behavior throughout ten 
adsorption–combustion cycles  and retained 94.4% of the initial 
adsorption capacity in the tenth cycle, Thus, it is likely that other 
organic liquids with high volatility and low viscosity can be 
adsorbed and aerogels can be regenerated efficiently.
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Figure  2  (a) Contact angles and (b) adsorption capacities for aerogels in 
question, as well as (c) reusability tests for G-CF50.

Table  1  Surface areas and porosity of aerogels.

Sample
BET surface area/
m2 g–1

Total pore volume/ 
cm3 g–1

Pore radius/ 
Å

GA 153.248 1.515 16.606

G-CF50 313.087 0.876 16.496

G-CF75 29.000 0.269 16.558

CF 12.568 0.003 16.448

Figure  1  (a) FTIR spectra and (b) XRD patterns of (1) G-CF25, (2) 
G-CF50 and (3) G-CF75; SEM micrographs of (c) G-CF50 and (d) G-CF75.
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