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polymerization and the formation of a hydrophilic polymer shell. 
An improved method11 for the preparation of alkyl cyanoacrylate 
nanocapsules involves the intermediate synthesis of a well-
defined adduct of a single monomer unit. This allows one to 
access capsules with thinner walls and, generally, with a more 
reproducible capsule structure. 

The addition of fatty alcohols at alkyl cyanoacrylates was 
previously12 revealed in the course of studies of reactions 
between CH-acids and cyanoacrylates. It was shown that strong 
nucleophiles are easily added to the electron-deficient double 
bond of alkyl cyanoacrylate.13 The addition of weak nucleophiles, 
e.g., fatty alcohols, required the use of acidic medium. Upon 
elimination of fatty alcohols, oligomers capable of self-
organization into micelles could be synthesized. 

In the present study, compounds 1–4 were obtained by adding 
the corresponding linear alkanols C6–C12 to ethyl 2-cyano
acrylate in a non-aqueous medium, with a 10 mol% excess of 
alkanol having been used (Scheme 1). To prevent possible 
radical polymerization, 5 mol% hydroquinone was applied, 
while to prevent anionic polymerization it was necessary to 
create an acidic environment. The proton donor was a 
combination of 2-cyanoacrylic acid (5.5 mol%) highly soluble in 
both reagents and TsOH (3 mol%). The reaction was run for 6 h 
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Scheme  1  Reagents and conditions: i, H2C=C(CN)CO2H (5.5 mol%), 
hydroquinone (5 mol%), TsOH (3 mol%), SO2 (constant gas flow), 20 °C, 
6 h; ii, H2O, 20 °C. 
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at room temperature with bubbling SO2 gas14 to prevent 
immediate polymerization.

The IR spectrum of ethyl 2-cyano-3-(hexyloxy)propanoate 1 
contains the band at 2251 cm–1 for the nitrile group and the band 
at 1750 cm–1 for the ester carbonyl group [Figure 1(a)]. The 
bands in the range 860–1468 cm–1 refer to the vibrations of the 
C–H aliphatic bonds. Elemental analysis data of products 1–4 
confirm well the theory.

The resulting monomers 1–4 would lose the alcohol molecule 
upon hydrolysis15 and can thus form cyanoacrylate oligomers 
which, at the same time, contain a terminal aliphatic hydrophobic 
substituent (see Scheme 1). The IR spectrum of the O1 oligomer, 
compared to the spectrum of the starting compound 1, contains a 
new band at 1637 cm–1, apparently related to a carbonyl group of 
some other type [see Figure 1(b)].

The resulting oligomers O1–O4 contain a terminal aliphatic 
hydrophobic substituent and thus can serve as surfactants capable 
of self-organization with subsequent formation of nanoparticles. 
Analysis of the MALDI-TOF mass spectrum of the O1 oligomer 
(Figure 2) confirms that the polymerization proceeds according 
to the stated mechanism. In the spectrum, one can observe peaks 
for products with different molecular weights with a step 
between them about 125.3, which corresponds to the mass of one 
unit of the oligomer.

A similar regularity is observed for oligomers O2–O4 (see 
Online Supplementary Materials). Based on the obtained oligomers, 
a series of water-filled nanocapsules of various hydrophobicity was 
synthesized. Depending on the production conditions, their shape 
can be changed from a solid nanoparticle to hollow capsules, the 

creation of which requires the use of a two-phase aqueous system 
of a dispersed medium. The particles were studied by dynamic light 
scattering (Table 1). According to the obtained particle distribution 
diagrams, there are three types of signals. The first belongs to 
micelles formed by a fatty alcohol (8–15 nm region), the second 
belongs to capsules (30–100 nm region), and the third (500–600 nm 
region) belongs to agglomerates of spherical capsules.

The sizes of oligo(ethyl 2-cyanoacrylate) capsules formed as a 
result of self-organization depend on the length of the molecule 
and grow with elongation of the terminal aliphatic substituent (see 
Table 1). When capsules are formed from O1, micelles formed 
from hexanol do not appear due to the insufficient length of its 
aliphatic group and essentially high solubility of hexanol in water. 
Oligomer O4 also does not form micelles during the formation of 
its capsules, which is due to the fact that dodecanol is poorly 
soluble in water. The diameters of micelles formed in cases of O2 
and O3 are almost the same being 9 and 13 nm, respectively.

In summary, several fatty alcohols were added at a highly 
polarized double bond of ethyl 2-cyanoacrylate in the presence 
of 2-cyanoacrylic acid. Elimination of these alcohols in aqueous 
medium leads to the formation of oligomers possessing surfactant 
properties and being promising for the creation of polymeric 
drug carriers.
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Figure  1  IR spectra of (a) compound 1 and (b) oligomer O1.
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Figure  2  MALDI-TOF mass spectrum of oligomer O1. 

Table  1  Investigation of oligo(ethyl 2-cyanoacrylate) particles by dynamic 
light scattering.

Oligo-
mer

Alk
Alk 
length/
nm

Capsule
size/
nm

AlkOH 
micelle 
size/nm

Size of agglomerates 
of spherical capsules/
nm

O1 n-C6H13 1.23 36.1   –   –
O2 n-C8H17 1.54 62.2 13.1   –
O3 n-C10H21 1.85 80.9   9.5 559.8
O4 n-C12H25 2.16 90.6   – 586.1
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