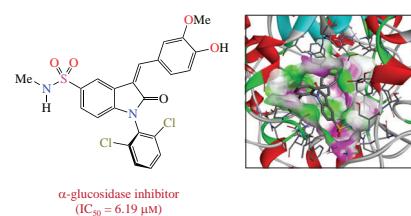


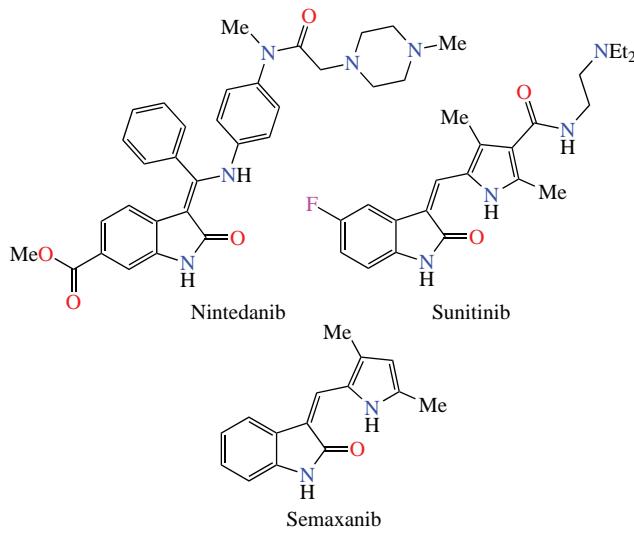
Novel sulfonamide-functionalized arylidene indolones as potent α -glucosidase inhibitors: synthesis, characterization, and *in vitro* and *in silico* studies

Giang V. Nguyen,^a Hoang T. Dang,^a Luyen D. Nguyen,^a Hai V. Nguyen,^a Huong T. Le,^a Huy H. N. Nguyen,^b An V. Nguyen,^b Yen H. Nguyen,^c Van-Ha Nguyen^{*c} and Huy-Hoang Do^{*c}


^a Hanoi University of Pharmacy, Phan Chu Trinh, Hoan Kiem, 11021 Hanoi, Vietnam

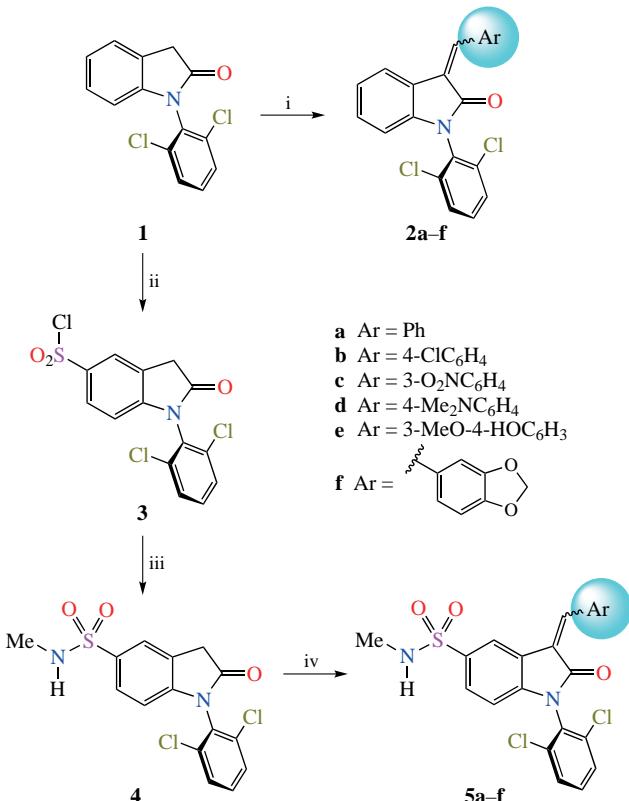
^b Nguyen Gia Thieu High School, Long Bien, Gia Lam, 11811 Hanoi, Vietnam

^c Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Hoan Kiem, 11021 Hanoi, Vietnam. E-mail: nguyenvanha@vnu.edu.vn, dohuy.h@vnu.edu.vn


DOI: 10.1016/j.mencom.2023.06.033

3-Arylidene-1-(2,6-dichlorophenyl)indolones and in particular their 5-methylaminosulfonyl derivatives efficiently inhibit α -glucosidase enzyme. The results are corroborated by *in silico* docking studies which show the binding of aminosulfonyl derivatives to be more favorable due to additional hydrogen bonding. The most active compound of the series shows the IC_{50} of 6.19 μ M.

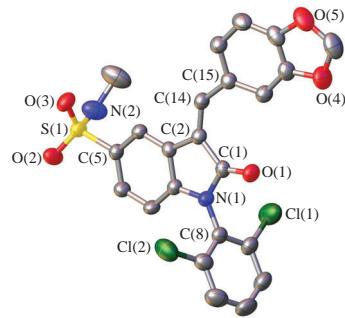
Keywords: indolones, arylidene indolones, sulfonamides, α -glucosidase inhibitor, enzyme docking.


Indole and indolone scaffolds common in alkaloid natural products¹ have been of great interest for their biological activity. Their derivatives demonstrate antimicrobial,² antiviral,³ anticonvulsant⁴ and anti-tumor activity.^{5–7} Examples include an angiokinase inhibitor and an effective antiproliferative drug (Nintedanib), as well as a tyrosine kinase inhibitor used for treatment of gastrointestinal stromal tumors (Sunitinib). Semaxanib, although failed in phase III clinical trials, has been a tyrosine kinase inhibitor for colorectal cancer treatment. It is interesting to notice that these and some other compounds with strong biological activities belong to C³=C-substituted indolone chemotype. Such compounds are readily available from base-catalyzed reactions between indolones and aldehydes.⁸ The simplicity of the synthetic procedure and the diversity of aldehyde counterparts allow easy preparation of a large library of C³-substituted alkylidene/arylidene indolones for biological activity investigation.

In parallel, sulfonamide is one of many pharmacophores widely accepted in clinical usage. Sulfonamide-functionalized compounds have demonstrated a wide range of biological activities, *i.e.* enzyme inhibitions,⁹ and antidiabetic,¹⁰ antimicrobial,¹¹ anticancer, antiparasitic, and antioxidant properties.^{12–14}

Despite the success of the two scaffolds, it is interesting to notice that there are only a few works exploring the synthesis and potential application of sulfonamide-functionalized arylidene indolones. Sulfonamide isatin displayed nanomolar potency for inhibiting the executioner caspases 3/7¹⁵ while 3-hydroxy-2-oxoindole derivatives bearing the sulfonamide group were highly active antiviral agents.¹⁶ Nonetheless, their activities toward α -glucosidase enzyme, a target for type 2 diabetes treatment, were not fully explored. We herein report on synthesis and α -glucosidase inhibition activities of a series of sulfonamide-functionalized arylidene indolones bearing a biologically relevant 2,6-dichlorophenyl N-substituent. In addition, the corresponding sulfonamide-deprived indolones were compared in relation of biological activity, although some of them were the known compounds.¹⁷

The synthesis of 3-arylidene-1-(2,6-dichlorophenyl)-2-oxoindolines **2a–f** and 3-arylidene-1-(2,6-dichlorophenyl)-5-methylaminosulfonyl-2-oxoindolines **5a–f** is outlined in Scheme 1. The starting 1-(2,6-dichlorophenyl)-2-oxoindoline **1** was synthesized using an efficient, practical, environmentally benign, and high yielding one step reaction. The sulfonamide-free derivatives **2a–f** were obtained in good yields by piperazine-catalyzed aldol condensation between **1** (involving the 3-positioned CH-acidic methylene group) and a series of benzaldehydes.¹⁸ In parallel, the hydrogen atom at C⁵ in compound **1** was substituted by the chlorosulfonyl group. This electrophilic substitution reaction with chlorosulfonic acid occurred regioselectively due to the *para*-directionality of the N-CO group to furnish product **3** in 98% yield, which did not


Scheme 1 Reagents and conditions: i, RCHO, piperazine, EtOH, 80 °C; ii, CISO₃H, 0 → 20 °C; iii, MeNH₂, CH₂Cl₂; iv, RCHO, piperazine, EtOH, 80 °C.

require complicated purification. Compound **3** was easily converted into sulfonamide indolone **4** (90% yield) on treatment with methylamine. Finally, compound **4** was converted into products **5a-f** employing aldol condensation with the corresponding benzaldehydes. The ¹H NMR spectra of sulfonamide-containing arylidene indolones **5a-f** show peaks for C³=CH (singlet), C⁴H (singlet) above 8.00 ppm, SO₂NH sulfonamide (broad singlet, ~4–5.00 ppm), and NCH₃ (singlet, ~3.00 ppm). Note that the ¹H NMR spectra indicate that compounds **5c,e,f** were isolated as *E*-*Z* mixtures with *E*/*Z* molar ratios of 1:1, 2:1, and 1.3:1, respectively.

The molecular structure of **5f** was unambiguously confirmed by single crystal X-ray diffraction[†] (Figure 1, the single crystals were obtained by slow evaporation of its solution in a chloroform/hexane mixture). The dichlorophenyl ring is nearly perpendicular to the oxoindole core (dihedral angle of 71.5°). The arylidene ring is slightly twisted from indolone forming the dihedral angle

[†] Crystal data for **5f**. C₂₃H₁₆Cl₂N₂O₅S ($M = 503.34$), monoclinic, space group $P2_1/c$, at 298 K: $a = 17.9063(7)$, $b = 17.1830(7)$ and $c = 7.1177(3)$ Å, $\alpha = 90^\circ$, $\beta = 92.935^\circ$, $\gamma = 90^\circ$, $V = 2187.13(15)$ Å³, $Z = 4$, $d_{\text{calc}} = 1.529$ g cm⁻³, $\mu(\text{MoK}_\alpha) = 11.42$ cm⁻¹, $F(000) = 1032$. A total of 33407 reflections were collected (5318 independent reflections, $R_{\text{int}} = 0.0458$) and used in the refinement, which converged to $wR_2 = 0.198$ and $\text{GOOF} = 1.095$ for all independent reflections [$R_1 = 0.073$ was calculated for 5318 reflections with $I > 2\sigma(I)$]. Single-crystal X-ray diffraction was collected with a Bruker D8 QUEST instrument at 298 K (MoK_α radiation, $\lambda = 0.71073$ Å, TRIUMPH monochromator). Collection, editing of data, and refinement of the unit cell parameters was performed using APEX2.²⁶ Absorption correction was performed by the multi-scan method implemented in SADABS.²⁷ All calculations were performed using SHELXT²⁸ and OLEX2 programs.²⁹ The structure was solved by the direct method and refinement by the least squares method in the anisotropic approximation for the non-hydrogen atoms.

CCDC 2192055 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <http://www.ccdc.cam.ac.uk>.

Figure 1 Solid state molecular structure of **5f**. Structural parameters: bond lengths (Å): C(1)–O(1), 1.210(4); C(1)–C(2), 1.480(4); C(1)–N(1), 1.407(4); C(4)–N(1), 1.395(4); N(1)–C(8), 1.412(4); C(2)–C(14), 1.357(4); C(3)–C(4), 1.398(4); bond angles (°): O(1)–C(1)–C(2), 132.5(3); O(1)–C(1)–N(1), 121.2(3); C(1)–C(2)–C(14), 131.0(3).

of 14.26°. The bond distances and angles are in the normal range.¹⁹

Type 2 diabetes is accounted for almost 90–95% of diabetes patients,²⁰ which can lead to a severe health risk including kidney disease, retinopathy, and cardiovascular disease. Inhibition of α -glucosidase activity is closely related to the treatment of the disease. Interestingly, our tests show that compounds **2a-f** and **5a-f** are good to moderate α -glucosidase inhibitors. The IC₅₀ inhibition concentrations of **2a-f**, **5a-f**, acarbose, and related compounds were summarized in Table 1. Their activities were compared with the activity of acarbose (IC₅₀ = 257 μ M), a commercially available drug. It appears that the arylidene rings have significant influence on the activities of the compounds. Compounds bearing poor/non-hydrogen bonding benzyl (**2a**, **5a**) and 4-dimethylaminobenzyl substituents (**2d**, **5d**) are among the ones with the lowest activities. Interestingly, the α -glucosidase inhibitory activity of sulfonamide-functionalized arylidene indolones **5** are superior to the non-functionalized ones **2**, showing an enhancement in activities from 1.5 to 10 times. The most active indolone is the sulfonamide derivative bearing a 4-hydroxy-3-methoxybenzyl substituent, exhibiting an IC₅₀ value of 6.19 μ M. Note that, to this day, few indole/indolone,^{22,23} and merely any arylidene indoles²⁴ are shown to have α -glucosidase inhibition activity. We are not aware of any report on α -glucosidase inhibitory activities of sulfonamide arylidene indolones. Our incorporation of the sulfonamide moieties is unprecedented and yielded promising α -glucosidase inhibitors. Indeed, reactivities of the compounds are superior compared to the related 3-benzylidene-6-chloroindolin-2-one (IC₅₀ 195.59 ± 0.05 μ M) and 6-chloro-3-(4-dimethylaminobenzylidene)indolin-2-one (IC₅₀ 91.22 ± 0.01 μ M).²¹

Ligand protein docking was carried out to gain insight into the interaction between the target compounds **2a-f** and **5a-f** and α -glucosidase enzyme. The structure of α -glucosidase enzyme was obtained from protein database (PDB ID 3A4A).²⁵ Both the

Table 1 α -Glucosidase inhibitory of **2a-f** and **5a-f** (μ M).

Compound	IC ₅₀	Compound	IC ₅₀
2a	74.68 ± 4.91	5a	53.88 ± 3.70
2b	48.72 ± 0.52	5b	13.44 ± 0.51
2c	65.05 ± 4.89	5c	10.98 ± 0.61
2d	61.42 ± 3.66	5d	34.91 ± 1.00
2e	77.62 ± 2.50	5e	6.19 ± 0.40
2f	78.00 ± 3.92	5f	12.26 ± 0.99
Acarbose			257 ± 6.97
3-Benzylidene-6-chloroindolin-2-one			195.59 ± 0.05 ^a
6-Chloro-3-(4-dimethylaminobenzylidene)indolin-2-one			91.22 ± 0.01 ^a

^aRef. 21.

Table 2 Binding energy and primary interactions between **2a–f** and **5a–f** and α -glucosidase.

Compound	<i>E</i> /kcal mol ⁻¹ (<i>Z/E</i>)	Compound	<i>E</i> /kcal mol ⁻¹ (<i>Z/E</i>)
2a	-9.8/-9.6	5a	-10.3/-10.2
2b	-10.0/-9.7	5b	-10.2/-9.40
2c	-10.5/-10.3	5c	-10.9/-10.0
2d	-9.9/-8.5	5d	-9.8/-9.4
2e	-9.9/-9.7	5e	-10.9/-10.1
2f	-10.8/-10.6	5f	-10.9/-10.2

Z and *E* isomers of the compounds were screened for interaction (Table 2).

The results show that the binding energies between the compounds and the active site of α -glucosidase are in the 8.5–10.9 kcal mol⁻¹ range (see Online Supplementary Materials, Figure S25). It appears that the *Z* configuration of all compounds is slightly more energetically favorable. A representative comparison of interaction between *Z*-**5e** and *E*-**5e** to the protein is presented in Figure 2. Note that the sulfonamide derivatives **5** bind more strongly than their analogs **2**. In general, non-sulfonamide indolones **2a–f** interact with the protein pocket mainly *via* van der Waals interactions, except for **2c** and **2e**, where one hydrogen bond is formed with substituent $-\text{NO}_2$ and $-\text{OMe}$ (see Online Supplementary Materials, Tables S1–S3). On the other hand, compounds **5a–f** all interact with the binding pocket *via* arene–cation interaction with the residue Arg-315, arene–anion interaction with Asp-307 and π – π stacking with His-280. There is also a hydrogen bond between C=O of the indolone ring and His-280. The sulfonamide group in **5d** only forms one hydrogen bond with Arg-442 (bond length: 2.24 Å). More importantly, the sulfonamide group in compounds **5a–f** with a high binding energy also provides more contact with the pocket *via* two more hydrogen bonds with the residue Ser-157 (bond length: 2.33–2.37 Å), and Lys-156 (bond length: 2.69–2.76 Å) (Tables S4–S6).

In summary, a series of six arylidene indolones **2a–f**, and six novel sulfonamide arylidene indolones **5a–f** have been successfully synthesized. *In vitro* tests show that they can serve as moderate-to-good α -glucosidase inhibitors displaying an IC_{50}

concentration in the range of 6.19 to 78.00 μM . Especially, the incorporation of the sulfonamide group at C⁵ position of the indolone moiety improves the inhibitory activity. The difference in reactivity is rationalized by a molecular docking study, which suggests additional hydrogen bonding offered by the sulfonamide group to protein, leading to more energetically favorable binding of the sulfonamide-functionalized indolones.

This research is funded by the Vietnam National University, Hanoi (VNU) under project no. QG.21.08.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.06.033.

References

- 1 J. A. Homer and J. Sperry, *J. Nat. Prod.*, 2017, **80**, 2178.
- 2 J. Kaur, D. Utreja, Ekta, N. Jain and S. Sharma, *Curr. Org. Synth.*, 2019, **16**, 17.
- 3 M.-Z. Zhang, Q. Chen and G.-F. Yang, *Eur. J. Med. Chem.*, 2015, **89**, 421.
- 4 T. Saini, S. Kumar and B. Narasimhan, *Cent. Nerv. Syst. Agents Med. Chem.*, 2015, **16**, 19.
- 5 S. Dadashpour and S. Emami, *Eur. J. Med. Chem.*, 2018, **150**, 9.
- 6 N. Devi, K. Kaur, A. Biharee and V. Jaitak, *Anti-Cancer Agents Med. Chem.*, 2021, **21**, 1801.
- 7 M. T. El-Sayed, N. A. Hamdy, D. A. Osman and K. M. Ahmed, *Adv. Mod. Oncol. Res.*, 2015, **1**, 20.
- 8 Y. M. Khetmalis, M. Shivani, S. Murugesan and K. V. G. C. Sekhar, *Biomed. Pharmacother.*, 2021, **141**, 111842.
- 9 S. Isik, F. Kockar, M. Aydin, O. Arslan, O. O. Guler, A. Innocenti, A. Scozzafava and C. T. Supuran, *Bioorg. Med. Chem.*, 2009, **17**, 1158.
- 10 S. Riaz, I. U. Khan, M. Bajda, M. Ashraf, Qurat-Ul-Ain, A. Shaukat, T. Rehman, S. Mutahir, S. Hussain, G. Mustafa and M. Yar, *Bioorg. Chem.*, 2015, **63**, 64.
- 11 N. A. Galieva, D. A. Saveliev, O. S. Eltsov, V. A. Bakulev, G. Lubec, J. Xing, Z. Fan and T. V. Beryozkina, *Mendeleev Commun.*, 2021, **31**, 495.
- 12 H. Azevedo-Barbosa, D. F. Dias, L. L. Franco, J. A. Hawkes and D. T. Carvalho, *Mini-Rev. Med. Chem.*, 2020, **20**, 2052.
- 13 H. Azevedo-Barbosa, G. A. Ferreira-Silva, C. F. Silva, T. B. de Souza, D. F. Dias, A. C. C. de Paula, M. Ionta and D. T. Carvalho, *Toxicol. In Vitro*, 2019, **59**, 150.
- 14 G. H. Elgemeie, R. A. Azzam and R. E. Elsayed, *Med. Chem. Res.*, 2019, **28**, 1099.
- 15 W. Chu, J. Rothfuss, A. D'Avignon, C. Zeng, D. Zhou, R. S. Hotchkiss and R. H. Mach, *J. Med. Chem.*, 2007, **50**, 3751.
- 16 C. Wei, X. Yang, S. Shi, L. Bai, D. Hu, R. Song and B. Song, *J. Agric. Food Chem.*, 2023, **71**, 267.
- 17 A. Manvar, A. Bavishi, R. Loriya, M. Jaggi and A. Shah, *Med. Chem. Res.*, 2013, **22**, 3076.
- 18 P. L. Somashekar, P. N. S. Pai and G. Rao, *Chem. Sci. Trans.*, 2013, **2**, 813.
- 19 J. Spencer, B. Z. Chowdhry, S. Hamid, A. P. Mendham, L. Male, S. J. Coles and M. B. Hursthouse, *Acta Crystallogr.*, 2010, **C66**, 71.
- 20 American Diabetes Association, *Diabetes Care*, 2014, **37**, S81.
- 21 M. Khan, M. Yousaf, A. Wadood, M. Junaid, M. Ashraf, U. Alam, M. Ali, M. Arshad, Z. Hussain and K. M. Khan, *Bioorg. Med. Chem.*, 2014, **22**, 3441.
- 22 J. Wang, S. Lu, R. Sheng, J. Fan, W. Wu and R. Guo, *Mini-Rev. Med. Chem.*, 2020, **20**, 1791.
- 23 H. Sun, Y. Zhang, W. Ding, X. Zhao, X. Song, D. Wang, Y. Li, K. Han, Y. Yang, Y. Ma, R. Wang, D. Wang and P. Yu, *Eur. J. Med. Chem.*, 2016, **123**, 365.
- 24 K. Yamamoto, H. Miyake, M. Kusunoki and S. Osaki, *FEBS J.*, 2010, **277**, 4205.
- 25 M. Taha, S. Imran, F. Rahim, A. Wadood and K. M. Khan, *Bioorg. Chem.*, 2018, **76**, 273.
- 26 APEX2, Version 2008.1–0, Bruker AXS, Madison, WI, USA, 2008.
- 27 G. M. Sheldrick, *SADABS, Program for Empirical Absorption Correction*, Gottingen, Germany, 1996.
- 28 G. M. Sheldrick, *Acta Crystallogr.*, 2015, **A71**, 3.
- 29 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339.

Received: 9th January 2023; Com. 23/7079

Figure 2 2D model for comparison of the interaction between the protein and *Z/E*-**5e**.