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 of molecular docking performed using models 
 targets involved in intracellular signaling 
ated with tumor growth. Molecular docking is 

an effective tool for analyzing in silico the interaction options of 
new compounds with potential protein targets, from which it is 
possible to make assumptions about the likely mechanisms of 
action of potential drugs and to explain the biological effects 
registered in vitro or in vivo with cellular or laboratory models. 

As part of this approach, X-ray diffraction analysis was made 
of our lead compound, a natural phaeosphaeride A derivative,8 
AV-66,7 (Figure 1).†

The asymmetric unit of the title compound, C19H30N2O5, 
contains two independent molecules. AV-6 contains three 
primary sections, an alkyl chain consisting of five C atoms, a 
bicyclic system consisting of five-(envelop-like) and six-(close 
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†	 Crystal data for AV-6. C19H30N2O4 (M = 350.45), monoclinic, space 
group P21 at 100.0(5) K, a = 11.88260(10), b = 9.55000(10) 
and  c = 17.21700(10) Å, α = 90°, β = 107.8250(10)°, γ = 90°, 
V = 1859.98(3) Å3, Z = 4, dcalc = 1.251, μ(CuKα) = 0.707 mm–1, 
F(000) = 760.0. Measured were 28159 reflections 
(5.392° £ 2θ £ 139.968°), 7060 unique (Rint = 0.0345, Rsigma = 0.0306) 
which were used in all calculations. The final R1 was 0.0295 [I > 2σ(I )] 
and wR2 was 0.0757 (all data).
	 X-ray diffraction data were collected on an XtaLAB Synergy, Single 
source at home/near, HyPix diffractometer. Using Olex2,10 the structure 
was solved with the ShelXT11 structure solution program using intrinsic 
phasing and refined with the ShelXL12 refinement package using least 
squares minimization. XRD analysis was performed at the X-ray 
Diffraction Centre of St. Petersburg State University (Russian Federation).
	 CCDC 2244835 contains the supplementary crystallographic data for 
this paper. These data can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.
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to planar) membered rings with attached substituents and a 
pyrrolidine ring adjacent by N(17) to C(6) atom of the bicyclic 
system, which also exhibits an envelope conformation.

Molecule B is characterized by an intramolecular hydrogen 
bond between N(17') and a hydrogen atom of the O(2')H hydroxyl 
group. In the crystal, the molecules form layered structures. 
Molecules of each type, A or B, form bilayers. In the bilayer, the 
molecules are arranged antiparallel, and intermolecular hydrogen 
bonds between oxygen atoms of hydroxyl groups and hydrogen 
atoms of the pentyl chains participate in the formation of bilayers.

In turn, there are hydrogen bonds between the bilayers, 
between the oxygen atoms of the methoxy groups and the 
hydrogens of the exocyclic double bonds of a five-membered 
cycle of the bicyclic fragment. The pentyl chains of adjacent 
bilayers are directed towards each other.

The molecular docking was performed for a number of protein 
targets using the SwissDock service (http://www.swissdock.ch).

In addition to the AV-6 molecule, other ligands from the 
corresponding files in the protein data base (PDB) were used. 
Some derivatives of natural phaeosphaeride A activate 
intracellular stress-activated signaling kinase cascades. In an 
experiment on human epidermoid carcinoma cells A431, we 
previously showed the induction of phosphorylation and 
activation of ERK 1/2 (pThr185/pTyr187), JNK (pThr183/
pTyr185), and p38 (pThr180/pTyr182).7

Proteins involved in the implementation of kinase cascades 
were considered as potential protein targets for docking, both 
protein kinases per se and their protein targets involved in the 
regulation of cell growth and differentiation: ERK2/MAPK1, 
JNK/MAPK8, AKT1, MAPK11, MAPK12, MAPK13, MAPK14, 
STAT1, STAT3, and STAT5B. Docking was performed for the 
entire available surface of proteins. Ligands from the pdf format 
were converted to the mol2 format using a tool available on the 
website https://datascience.unm.edu/tomcat/biocomp/convert.‡
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Figure  1  X-ray crystal structure of AV-6; hydrogens are omitted for 
clarity.

‡	 ERK2 pdb:7w5o; signal transducer and activator of transcription 1-alpha/
beta STAT1 pdb:1yvl; signal transducer and activator of transcription 
3 STAT3 (APRF); signal transducer and activator of transcription 5B STAT5B; 
mitogen-activated kinase p38 (pT180/pY182) MAPK11 (PRKM11, 
SAPK2, SAPK2B) pdb:3gp0; mitogen-activated protein kinase 12

MAPK12 (ERK6, SAPK3) pdb:1cm8; mitogen-activated protein kinase 13 
MAPK13 (PRKM13, SAPK4); pdb: 4yn0; mitogen-activated protein kinase 
14 MAPK14 (CSBP, CSBP1, CSBP2, CSPB1, MXI2, SAPK2A) pdb:6sfi; 
stress-activated protein kinase JNK (pT183/pY185) MAPK8 pdb:4qtd; 
RAC-alpha serine/threonine-protein kinase AKT1 (PKB, RAC) pdb:6hhj.
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Figure  2  Bilayers in the AV-6 crystal.
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Information about the protein models used and data on the 
binding energy estimation of AV-6 and other ligands with protein 
targets are presented in Table 1.

When modeling the interaction of AV-6 with its targets in 
kinase cascades, high values of the Gibbs free energy change at 
a level of about 9 kcal mol–1 for some protein targets were 
revealed; they are shown in Table 1 (bold-faced). 

Based on the results of in silico modeling of the interaction of 
AV-6 with proteins involved in the intracellular kinase cascades, 
we suggest a probability of direct binding to MAPK11, MAPK12 
and AKT1 protein targets. The previously described effects 
associated with the kinase cascades and identified in in vitro cell 
models, may also be due to the direct effects of AV-6 on these 
targets. Now it will be easier in practice to fulfill experiments to 
determine real targets and to select methods for delivering AV-6 
to these targets.

Online Supplementary Materials
Supplementary data associated with this article can be found 

in the online version at doi: 10.1016/j.mencom.2023.06.030.
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Table  1  Calculated binding energy values of AV-6 and other ligands with 
kinases.

PDB code Kinase DG/kcal mol–1 Ligand

7w5o_chainAB ERK2   –9.09 6GI
7w5o_chainAB ERK2   –8.29 5ID
7w5o_chainA ERK2   –9.66 6GI
7w5o_chainA ERK2   –8.24 AV-6
7w5o_chainA ERK2   –7.75 5ID
1yvl STAT1   –7.62 AV-6
6mwb_chainA STAT5B   –8.38 AV-6
6mwb_chainB STAT5B   –8.16 AV-6
6tlc_chainB STAT3   –8.10 AV-6
6tlc_chainA STAT3   –8.30 AV-6
4qtb_chainAB ERK1   –8.15 AV-6
3gp0 MAPK11   –8.96 AV-6
3gp0 MAPK11   –8.30 B45
3gp0 MAPK11   –9.58 Nilotinib
1cm8 MAPK12   –9.01 AV-6
1cm8 MAPK12 –10.32 ANP
4yn0 MAPK13   –7.90 AV-6
4yn0 MAPK13   –8.00 N17
6sfi MAPK14   –7.53 AV-6
6sfi MAPK14   –7.51 D13
6sfi MAPK14 –10.73 LB5
4qtb MAPK8   –8.25 ANP
4qtb MAPK8   –8.00 AV-6
6hhj AKT1   –8.72 AV-6
6hhj AKT1 –10.99 GH4

Figure  3  Binding of AV-6 to MAPK11; marked are amino acid residues, 
which are located at a distance of 5 Å or less to the ligand.




