

Cu₄I₄-cubane cluster based on tris(*p*-anisyl)arsine: synthesis, crystal structure and photophysical properties

Yan V. Demyanov, Marianna I. Rakhmanova, Irina Yu. Bagryanskaya and Alexander V. Artem'ev

Table of content

S2	§1. Materials and Instrumentation
S2	§2. Synthetic procedures and characterization data
S2	§3. Powder X-ray diffraction data
S3	§4. FT-IR spectra
S4	§5. TGA&DTG curve
S4	§6. Temperature dependent excitation spectra of 1 ·CH ₂ Cl ₂
S4	§7. References

§1. Materials and Instrumentation

Caution! These operations, which contain organoarsenic compounds could be potential hazardous. For safety, experiments should be performed in an efficient hood.

AsAn₃ was synthesized following the described procedure¹. CuI (99%, Sigma-Aldrich), *n*-BuLi (2,5 M hexane solution, Sigma) and EtCN (\geq 99%, Sigma-Aldrich) were used as purchased. All the solvents (CH₂Cl₂, THF, hexane) prior to use were purified by common protocols.

FT-IR spectra were collected on a Bruker Vertex 80 spectrometer. The CHN microanalysis was performed on a MICRO cube analyzer. Thermogravimetric analyses (TGA/c-DTA/DTG) were carried out in a closed Al₂O₃ pan under argon flow at 10 °C/min⁻¹ heating rate using a NETZSCH STA 449 F1 Jupiter STA.

Powder X-ray diffraction (PXRD) patterns were recorded on a Shimadzu XRD-7000 diffractometer (Cu- $\text{K}\alpha$ radiation, Ni – filter, 3–35° 2 θ range, 0.03° 2 θ step, 5s per point).

Emission and excitation spectra were recorded on a Fluorolog 3 spectrometer (Horiba Jobin Yvon) equipped with a cooled PC177CE-010 photon detection module and an R2658 photomultiplier. The absolute PLQYs were determined at 298 K using a Fluorolog 3 Quanta-phi integrating sphere. Temperature-dependent excitation and emission spectra as well as emission decays were recorded using an Optistat DN optical cryostat (Oxford Instruments) integrated with above spectrometer.

§2. Synthetic procedures and characterization data

[Cu₄I₄(AsAn₃)₄]·CH₂Cl₂ (**1**·CH₂Cl₂).

To an EtCN (1 mL) solution of CuI (25 mg, 0.131 mmol) a solution of AsAn₃ (52 mg, 0.131 mmol) in CH₂Cl₂ (4 ml) was added dropwise. The resulting mixture was stirred at room temperature for 30 min. The precipitate formed was centrifuged and dried in air. White powder. Yield: 65 mg (82%). FT-IR (KBr, cm⁻¹): 413 (w), 480 (m), 521 (s), 598 (w), 633 (w), 712 (w), 750 (m), 793 (s), 822 (s), 937 (w), 961 (w), 1007 (m), 1028 (s), 1078 (s), 1105 (m), 1177 (vs), 1250 (vs), 1288 (s), 1306 (m), 1400 (m), 1439 (m), 1460 (s), 1497 (vs), 1570 (s), 1591 (s), 1888 (w), 2039 (w), 2835 (m), 2940 (m), 2955 (m), 2999 (w), 3059 (w). Anal. Calc. for C₈₅H₈₆As₄Cu₄I₄Cl₂O₁₂ (2431.98): C, 42.0; H, 3.6. Found: C, 41.9; H, 3.4.

§3. Powder X-ray diffraction data

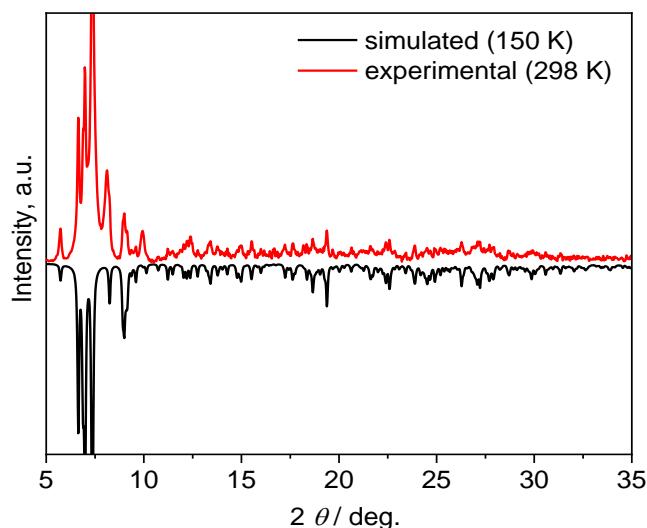


Figure S1. Experimental and simulated PXRD patterns of **1**·CH₂Cl₂.

§4. FT-IR spectra

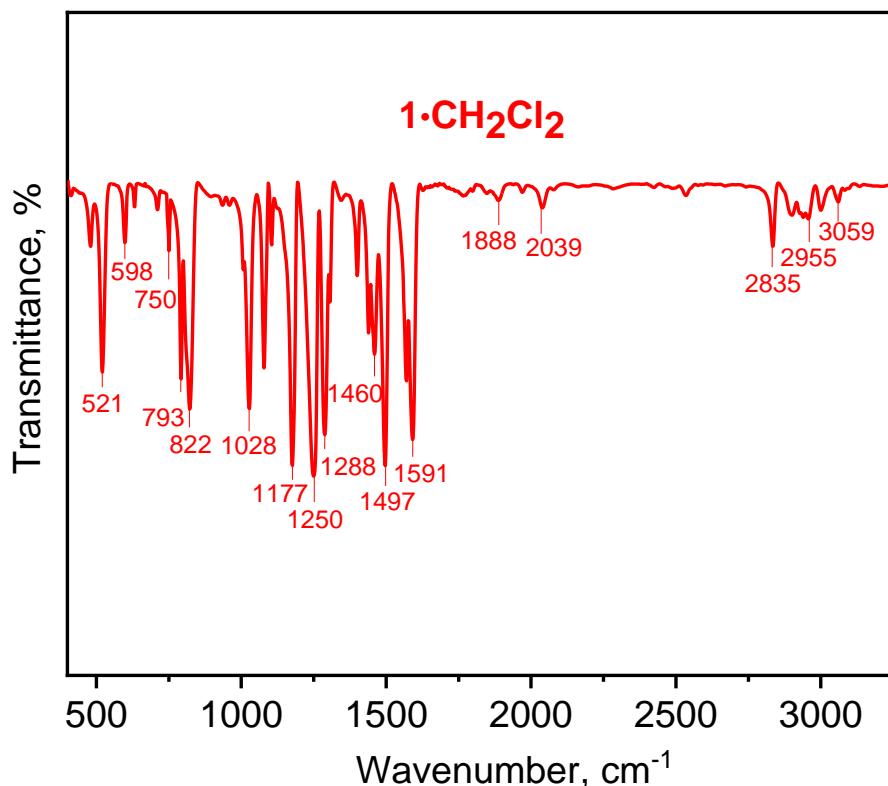
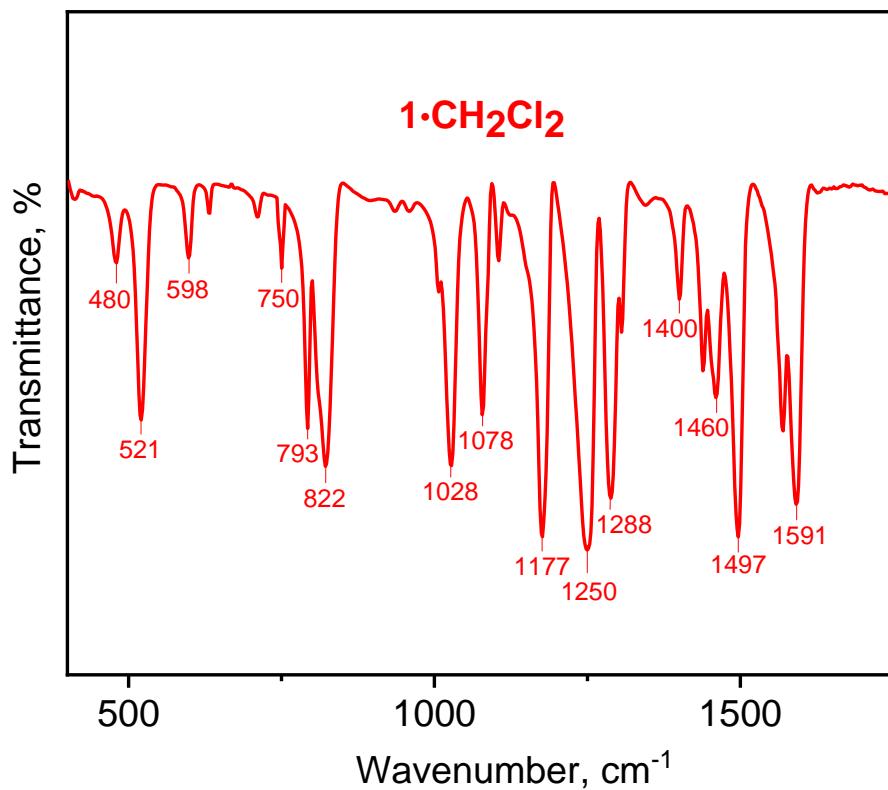
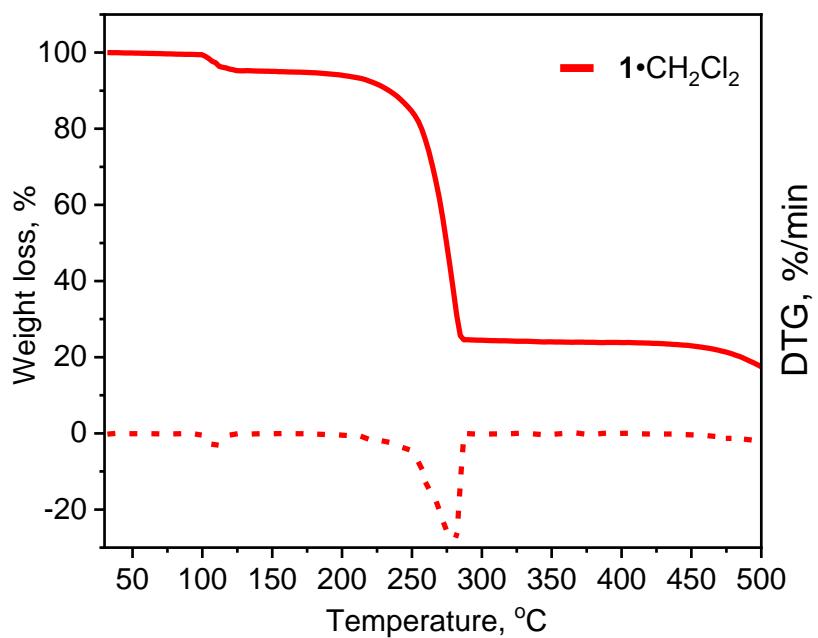
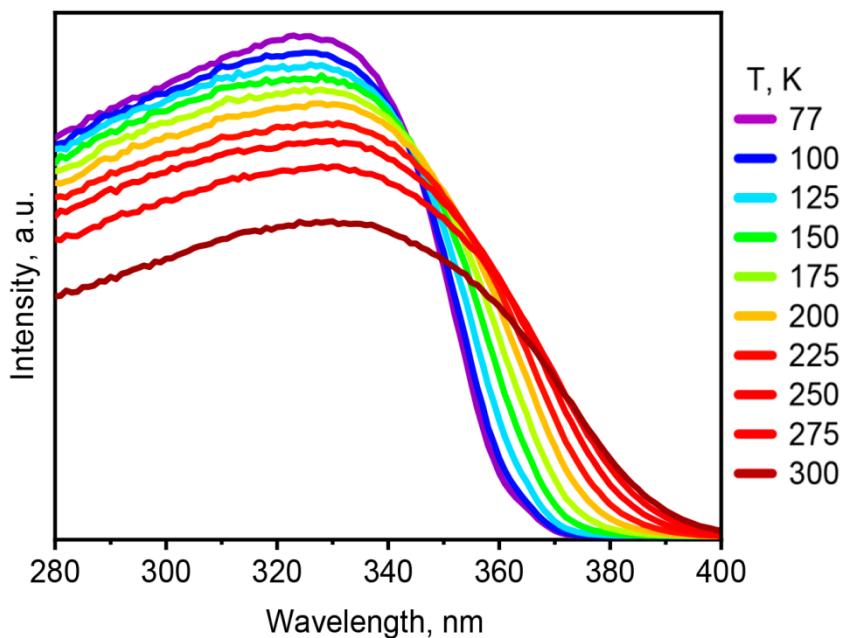


Figure S2. FT-IR spectrum for 1·CH₂Cl₂ in the 400–3250 cm⁻¹ region.


Figure S3. FT-IR spectrum for 1·CH₂Cl₂ in the fingerprint region.

§5. TGA&DTG curves

Figure S4. TGA&DTG curve for $\mathbf{1}\cdot\text{CH}_2\text{Cl}_2$.

§6. Temperature dependent excitation spectra of $\mathbf{1}\cdot\text{CH}_2\text{Cl}_2$

Figure S5. Temperature dependent excitation spectra of $\mathbf{1}\cdot\text{CH}_2\text{Cl}_2$ ($\lambda_{\text{em}} = 575$ nm).

§7. References

[1] S. Tanaka, M. Konishi, H. Imoto, Y. Nakamura, M. Ishida, H. Furuta, K. Naka, *Inorg. Chem.*, 2020, **59**, 9587.