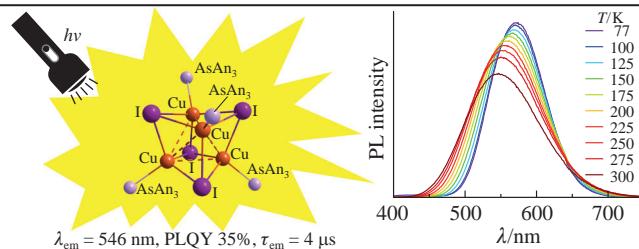


Cu₄I₄-cubane cluster based on tris(*p*-anisyl)arsine: synthesis, crystal structure and photophysical properties


Yan V. Demyanov,^a Marianna I. Rakhmanova,^a Irina Yu. Bagryanskaya^b and Alexander V. Artem'ev^{*a}

^a A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. E-mail: chemisufarm@yandex.ru

^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation

DOI: 10.1016/j.mencom.2023.06.014

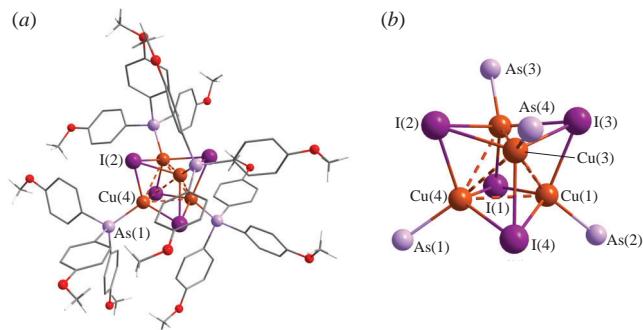
A new cubane cluster [Cu₄I₄(AsAn₃)₄] was synthesized in 82% yield by the reaction of tris(*p*-anisyl)arsine (AsAn₃) with CuI. At ambient temperature, this cluster exhibits bright yellow-green phosphorescence ($\lambda_{\text{max}} = 546$ nm) with the quantum yield of 35% and 4.1 μ s decay time.

Keywords: copper(I) complexes, tris(*p*-anisyl)arsine, cubane-like clusters, photoluminescence, crystal structure.

Recently, an increased attention has been paid to luminescent copper(I) complexes due to their fascinating structural diversity^{1–6} affecting to photophysical properties such as efficient thermally activated delayed fluorescence (TADF),^{7,8} room temperature phosphorescence^{9–13} and stimuli-responsive luminescence.¹⁴ Compared to conventional luminescent materials, copper-based phosphors are low cost and easy to prepare and store, making them good candidates for electroluminescent devices, sensors and photosensitizers for solar cells.^{15–17} One of the most intriguing subclasses of luminescent Cu^I complexes is represented by tetrานuclear cubic Cu₄I₄ clusters. Cuprophilic interactions play an important role in the emission properties of these clusters. For example, a decrease in the Cu···Cu distances caused by thermal or mechanical impacts affects the LUMO energy of [Cu₄I₄], which leads to a bathochromic shift of the emission maximum.¹⁴ Generally, the largest number of such luminescent complexes are based on N- and P-donor ligands.^{18–24} At the same time, there are much fewer examples of such complexes with ‘heavier’ pnictine ligands, such as arsines,^{25–29} although arsine ligands show some advantages over their phosphine counterparts, *e.g.*, an increase in the rate of TADF at ambient temperature^{30–32} due to the ‘heavy atom’ effect of pnictogen. Thus, the synthesis and photophysical study of new luminescent copper complexes based on heavy pnictine ligands is an urgent task of coordination chemistry. Herein, we report the synthesis of a Cu₄I₄-cubane cluster based on tris(*p*-anisyl)arsine (AsAn₃) and investigation of its photophysical properties.

The interaction of CuI with an equimolar amounts of AsAn₃ in EtCN/CH₂Cl₂ at room temperature leads to the formation of a tetrานuclear complex [Cu₄I₄(AsAn₃)₄] isolated as a solvate **1**·CH₂Cl₂ in 82% yield. The obtained complex is moisture- and air-stable white powder, poorly soluble in EtCN, CH₂Cl₂ and CHCl₃. However, upon storage in air, it can lose the solvate CH₂Cl₂ molecule. The phase purity of **1**·CH₂Cl₂ has been verified by powder X-ray diffractometry and microanalysis data (Figure S1, see Online Supplementary Materials). The FTIR spectrum of the product displays characteristic bands of coordinated arsenic ligands and also contains a specific band at 750 cm^{–1} belonging to the $\nu_{\text{C}-\text{Cl}}$

stretching vibrations of the CH₂Cl₂ solvate molecule (Figures S2 and S3). According to thermogravimetric analysis, the solvate **1**·CH₂Cl₂ loses the solvate molecules in the range of 99–120 °C ($\Delta m_{\text{exp}} = 4.1\%$, $\Delta m_{\text{calc}} = 3.5\%$), after which it remains stable up to 210 °C (Figure S4).


Single crystal XRD analysis[†] revealed that the compound **1**·CH₂Cl₂ crystallizes in the space group $P\bar{1}$. The packing of **1**·CH₂Cl₂ contains the following van der Waals interactions: C_{Me}–H···C_{Ar} (2.877 Å), C_{Me}–H···π (2.905 Å), C_{Me}–H···I (3.139 Å), C_{CH₂Cl₂}–H···C_{Ar} (2.872 Å), C_{CH₂Cl₂}–H···π (2.737 Å), C_{CH₂Cl₂}–H···O (2.697 Å), C_{Ar}–H···O (2.679 Å), C_{Ar}–H···C_{Ar} (average 2.878 Å), C_{Me}···C_{Ar} (3.376 Å), C_{Me}···O (3.150 Å) and C_{Ar}···O (3.182 Å). Its molecular structure is shown in Figure 1 and selected interatomic distances are listed in Table 1. The compound **1**·CH₂Cl₂ consists of a [Cu₄I₄] core supported by four An₃As ligands. Each copper atom adopts a tetrahedral environment [Cu@I₃As], which is represented by three iodine atoms and one arsenic atom. In **1**·CH₂Cl₂

[†] Crystal data for **1**·CH₂Cl₂. C₈₄H₈₄As₄Cu₄I₄O₁₂·CH₂Cl₂ ($M = 2431.87$), triclinic, space group $P\bar{1}$, $a = 12.9602(8)$, $b = 15.4260(9)$ and $c = 24.2353(15)$ Å, $\alpha = 86.713(2)$ °, $\beta = 81.975(3)$ °, $\gamma = 89.061(2)$ °, $V = 4789.7(5)$ Å³, $Z = 2$, $T = 200$ K, $\mu(\text{MoK}\alpha) = 3.645$ mm^{–1}, $d_{\text{calc}} = 1.686$ g cm^{–3}. Total of 58510 reflections were measured, and 18813 independent reflections ($R_{\text{int}} = 0.070$) were used in the further refinement. The refinement converged to $wR_2 = 0.1877$ and GOF = 1.014 for all independent reflections [$R_1 = 0.0668$ was calculated against F for 13006 observed reflections with $I > 2\sigma(I)$]. Single crystals of **1**·CH₂Cl₂ were grown by diffusion of hexane vapor into an EtCN/CH₂Cl₂ solution overnight. The data were collected on a Bruker Kappa Apex II CCD diffractometer using φ, ω -scans of narrow (0.5)° frames with MoK α radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. The structures were solved by direct methods (SHELXL97) and refined by the full-matrix least-squares anisotropic-isotropic (for H atoms) procedure using the SHELXL-2014/7 program.³³ Absorption corrections were applied by the empirical multiscan method using the SADABS program.³⁴ The positions of hydrogen atoms were calculated in the riding model.

CCDC 2222588 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <http://www.ccdc.cam.ac.uk>.

Table 1 Selected interatomic distances in **1**·CH₂Cl₂.

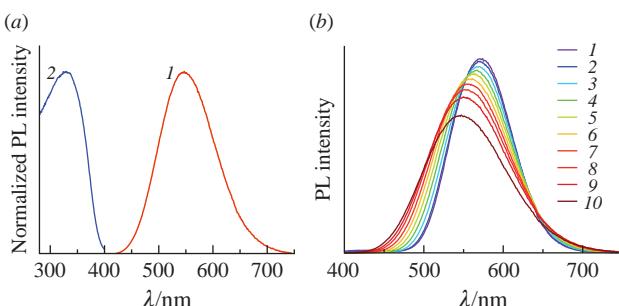

Bond	Cu–Cu/Å	Bond	Cu–I/Å	Bond	Cu–I/Å	Bond	Cu–As/Å
Cu(1)–Cu(2)	2.7570(17)	Cu(2)–I(1)	2.6765(13)	Cu(1)–I(3)	2.6625(14)	Cu(1)–As(2)	2.3683(15)
Cu(1)–Cu(3)	2.8241(17)	Cu(4)–I(1)	2.7019(14)	Cu(3)–I(3)	2.6724(14)	Cu(2)–As(3)	2.3670(15)
Cu(1)–Cu(4)	2.8459(18)	Cu(1)–I(1)	2.7028(14)	Cu(2)–I(3)	2.6860(14)	Cu(3)–As(4)	2.3730(16)
Cu(2)–Cu(3)	2.7194(18)	Cu(3)–I(2)	2.6767(15)	Cu(1)–I(4)	2.6621(14)	Cu(4)–As(1)	2.3877(15)
Cu(2)–Cu(4)	2.7968(17)	Cu(4)–I(2)	2.6879(14)	Cu(3)–I(4)	2.6973(15)		
Cu(3)–Cu(4)	2.9899(18)	Cu(2)–I(2)	2.6942(15)	Cu(4)–I(4)	2.7013(15)		

Figure 1 (a) Molecular structure of **1**·CH₂Cl₂. The H atoms of the arene rings and the CH₂Cl₂ solvate molecule are omitted for clarity. (b) Structure of the [Cu₄I₄] core in **1**·CH₂Cl₂ with coordinated As atoms. *p*-Anisyl substituents in arsine ligands are not shown.

such Cu···Cu distances as Cu(1)–Cu(2) [2.7570(17) Å], Cu(2)–Cu(3) [2.7194(18) Å] and Cu(2)–Cu(4) [2.7968(17) Å] are shorter than the sum of the van der Waals radii of Cu (2.80 Å). At the same time, some of them, Cu(1)–Cu(3) [2.8241(17) Å] and Cu(1)–Cu(4) [2.8459(18) Å], are close to this value, which indicates metallophilic interactions. The Cu–As (average 2.37 Å), Cu–I (average 2.69 Å) and Cu···Cu (average 2.82 Å) distances in **1**·CH₂Cl₂ are comparable with the literature values for related [Cu₄I₄] arsine complexes.^{25–27} It is noteworthy that the Cu···Cu distances in **1**·CH₂Cl₂ are significantly shorter than the corresponding values [*d*_{Cu···Cu} up to 3.317(1) Å] for the related complex [Cu₄I₄(An₃P)₄],¹⁸ whereas the Cu–I distances are very similar to those in [Cu₄I₄(An₃P)₄] (average 2.69 Å).

Under UV irradiation at 298 K, the powder of **1**·CH₂Cl₂ exhibits bright photoluminescence (PL) with a quantum yield of 35% ($\lambda_{\text{ex}} = 330$ nm). The normalized emission and excitation spectra at 298 K and the temperature-dependent PL spectra are shown in Figure 2. According to these data, the PL spectrum of **1**·CH₂Cl₂ appears as a broad band with $\lambda_{\text{max}} = 546$ nm. Upon cooling from 298 to 77 K [Figure 2(b)], the emission maximum undergoes a bathochromic shift by ~26 nm, which can be explained by low-temperature compression of the [Cu₄I₄] core, which causes a slight decrease of Cu···Cu distances. These changes are accompanied by a visual change in the PL color from green to

Figure 2 (a) Normalized (1) emission and (2) excitation spectra of solid **1**·CH₂Cl₂ at 298 K. (b) Temperature-dependent emission spectra ($\lambda_{\text{ex}} = 320$ nm) of solid **1**·CH₂Cl₂ recorded at (1) 77, (2) 100, (3) 125, (4) 150, (5) 175, (6) 200, (7) 225, (8) 250, (9) 275 and (10) 300 K.

yellow-green ($\lambda_{\text{max}} = 572$ nm). Interestingly, only one low-energy emission band is observed for **1**·CH₂Cl₂. On the contrary, cubic Cu₄I₄ clusters surrounded by N- or P-donor ligands, in particular [Cu₄I₄(An₃P)₄], demonstrate dual-mode emission represented by high-energy and low-energy emission bands belonging to ³(M+X)LCT and ³CC (cluster-centered) states, respectively.¹⁸ The absence of a high-energy band at low temperature suggests that the luminescence of **1**·CH₂Cl₂ probably belongs to the ³CC type phosphorescence. The PL decay time at 298 K is 4.1 μs. At 77 K, the PL lifetime sharply increases to 167 μs, which is comparable with the lifetimes for known Cu¹ arsine complexes at this temperature.²⁷

In summary, a new Cu¹ arsine complex [Cu₄I₄(AsAn₃)₄] was synthesized and characterized. At ambient temperature, it exhibits a bright yellow-green luminescence, tentatively assigned to cluster-centered phosphorescence.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project nos. 121031700321-3, 121031700313-8 and 1021051503141-0-1.4.1).

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.06.014.

References

- C. Kirst, J. Tietze, P. Mayer, H.-C. Böttcher and K. Karaghiosoff, *ChemistryOpen*, 2022, **11**, e202100224.
- C. Lescop, *Chem. Rec.*, 2021, **21**, 544.
- F. Moutier, J. Schiller, G. Calvez and C. Lescop, *Org. Chem. Front.*, 2021, **8**, 2893.
- M. El Sayed Moussa, A. M. Khalil, S. Evariste, H.-L. Wong, V. Delmas, B. Le Guennic, G. Calvez, K. Costuas, V. W.-W. Yam and C. Lescop, *Inorg. Chem. Front.*, 2020, **7**, 1334.
- C. Kirst, F. Zoller, T. Bräuniger, P. Mayer, D. Fattakhova-Rohlfing and K. Karaghiosoff, *Inorg. Chem.*, 2021, **60**, 2437.
- C. Kirst, M. Reichel and K. Karaghiosoff, *Inorg. Chim. Acta*, 2021, **514**, 119951.
- R. Czerwieniec, M. J. Leitl, H. H. H. Homeier and H. Yersin, *Coord. Chem. Rev.*, 2016, **325**, 2.
- H. Yersin, R. Czerwieniec, M. Z. Shafikov and A. F. Suleymanova, *ChemPhysChem*, 2017, **18**, 3508.
- R. Utrera-Melero, F. Massuyeau, C. Latouche, F. Camerel and S. Perruchas, *Inorg. Chem.*, 2022, **61**, 4080.
- T. S. Sukhikh, R. M. Khisamov, D. A. Bashirov, V. Yu. Komarov, M. S. Molokeev, A. A. Ryadun, E. Benassi and S. N. Konchenko, *Cryst. Growth Des.*, 2020, **20**, 5796.
- T. S. Sukhikh, R. M. Khisamov and S. N. Konchenko, *Molecules*, 2021, **26**, 2030.
- R. M. Khisamov, S. N. Konchenko and T. S. Sukhikh, *J. Struct. Chem.*, 2022, **63**, 2113 (*Zh. Strukt. Khim.*, 2022, **63**, 104047).
- N. A. Shekhovtsov, T. E. Kokina, K. A. Vinogradova, A. Y. Panarin, M. I. Rakhmanova, D. Y. Naumov, N. V. Pervukhina, E. B. Nikolaenkova, V. P. Krivopalov, R. Czerwieniec and M. B. Bushuev, *Dalton Trans.*, 2022, **51**, 2898.
- E. Cariati, E. Lucenti, C. Botta, U. Giovanella, D. Marinotto and S. Righetto, *Coord. Chem. Rev.*, 2016, **306**, 566.
- F. Dumur, *Org. Electron.*, 2015, **21**, 27.
- Y. Gou, M. Chen, S. Li, J. Deng, J. Li, G. Fang, F. Yang and G. Huang, *J. Med. Chem.*, 2021, **64**, 5485.

17 A. Guda, J. Windisch, B. Probst, J. A. van Bokhoven, R. Alberto, M. Nachtegaal, L. X. Chen and G. Smolentsev, *Phys. Chem. Chem. Phys.*, 2021, **23**, 26729.

18 B. Huitorel, H. El Moll, R. Utrera-Melero, M. Cordier, A. Fargues, A. Garcia, F. Massuyeau, C. Martineau-Corcos, F. Fayon, A. Rakhmatullin, S. Kahlal, J.-Y. Saillard, T. Gacoin and S. Perruchas, *Inorg. Chem.*, 2018, **57**, 4328.

19 R. Utrera-Melero, B. Huitorel, M. Cordier, J.-Y. Mevellec, F. Massuyeau, C. Latouche, C. Martineau-Corcos and S. Perruchas, *Inorg. Chem.*, 2020, **59**, 13607.

20 S. Perruchas, C. Tard, X. F. Le Goff, A. Fargues, A. Garcia, S. Kahlal, J.-Y. Saillard, T. Gacoin and J.-P. Boilot, *Inorg. Chem.*, 2011, **50**, 10682.

21 K. Kirakci, K. Fejfarová, J. Martinčík, M. Nikl and K. Lang, *Inorg. Chem.*, 2017, **56**, 4609.

22 P. P. Mazzeo, L. Maini, A. Petrolati, V. Fattori, K. Shankland and D. Braga, *Dalton Trans.*, 2014, **43**, 9448.

23 A. A. Titov, O. A. Filippov, A. F. Smol'yakov, A. A. Averin and E. S. Shubina, *Mendeleev Commun.*, 2021, **31**, 170.

24 M. I. Rogovoy, M. I. Rakhmanova, T. S. Sukhikh and A. V. Artem'ev, *Mendeleev Commun.*, 2021, **31**, 804.

25 M. F. Galimova, E. M. Zueva, A. B. Dobrynin, A. I. Samigullina, R. R. Musin, E. I. Musina and A. A. Karasik, *Dalton Trans.*, 2020, **49**, 482.

26 M. F. Galimova, E. M. Zueva, A. B. Dobrynin, I. E. Kolesnikov, R. R. Musin, E. I. Musina and A. A. Karasik, *Dalton Trans.*, 2021, **50**, 13421.

27 R. Kobayashi, R. Inaba, H. Imoto and K. Naka, *Bull. Chem. Soc. Jpn.*, 2021, **94**, 1340.

28 R. Kobayashi, H. Imoto and K. Naka, *Eur. J. Inorg. Chem.*, 2020, 3548.

29 R. Kobayashi, H. Kihara, T. Kusukawa, H. Imoto and K. Naka, *Chem. Lett.*, 2021, **50**, 382.

30 A. V. Artem'ev, Y. V. Demyanov, M. I. Rakhmanova and I. Yu. Bagryanskaya, *Dalton Trans.*, 2022, **51**, 1048.

31 Y. V. Demyanov, E. H. Sadykov, M. I. Rakhmanova, A. S. Novikov, I. Yu. Bagryanskaya and A. V. Artem'ev, *Molecules*, 2022, **27**, 6059.

32 Y. V. Demyanov, M. I. Rakhmanova, I. Yu. Bagryanskaya and A. V. Artem'ev, *Mendeleev Commun.*, 2022, **32**, 649.

33 G. M. Sheldrick, *Acta Crystallogr. Sect. A: Found. Adv.*, 2015, **71**, 3.

34 Bruker APEX3 software suite: APEX3, SADABS-2016/2 and SAINT, version 2018.7-2, Bruker AXS Inc., Madison, WI, 2017.

Received: 21st February 2023; Com. 23/7106