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increased attention has been paid to luminescent 
plexes due to their fascinating structural diversity1– 6 
otophysical properties such as efficient thermally 
yed fluorescence (TADF),7,8 room temperature 

nce9–13 and stimuli-responsive luminescence.14 
conventional luminescent materials, copper-based 
 low cost and easy to prepare and store, making 
didates for electroluminescent devices, sensors and 
rs for solar cells.15–17 One of the most intriguing 
 luminescent Cui complexes is represented by 
ubic Cu4I4 clusters. Cuprophilic interactions play 
ole in the emission properties of these clusters. For 
crease in the Cu···Cu distances caused by thermal 
l impacts affects the LUMO energy of [Cu4I4], 
 a bathochromic shift of the emission maximum.14 
 largest number of such luminescent complexes are 
d P-donor ligands.18–24 At the same time, there are 
amples of such complexes with ‘heavier’ pnictine 

as arsines,25–29 although arsine ligands show some 
er their phosphine counterparts, e.g., an increase in 
F at ambient temperature30–32 due to the ‘heavy atom’ 
ogen. Thus, the synthesis and photophysical study 
escent copper complexes based on heavy pnictine 
urgent task of coordination chemistry. Herein, we 
esis of a Cu4I4-cubane cluster based on tris( p-anisyl)-

) and investigation of its photophysical properties.
tion of CuI with an equimolar amounts of AsAn3 
l2 at room temperature leads to the formation of  

 complex [Cu4I4(AsAn3)4] isolated as a solvate 
2% yield. The obtained complex is moisture- and 
 powder, poorly soluble in EtCN, CH2Cl2 and CHCl3. 
n storage in air, it can lose the solvate CH2Cl2 
 phase purity of 1·CH2Cl2 has been verified by 
 diffractometry and microanalysis data (Figure S1, 
pplementary Materials). The FTIR spectrum of the 
s characteristic bands of coordinated arsenic ligands 

ins a specific band at 750 cm−1 belonging to the nC–Cl 

stretching vibrations of the CH2Cl2 solvate molecule (Figures S2 
and S3). According to thermogravimetric analysis, the solvate 
1·CH2Cl2 loses the solvate molecules in the range of 99–120 °C 
(∆mexp = 4.1%, ∆mcalc = 3.5%), after which it remains stable up 
to 210 °C (Figure S4).

Single crystal XRD analysis† revealed that the compound 
1·CH2Cl2 crystallizes in the space group P1̄. The packing of 
1·CH2Cl2 contains the following van der Waals interactions: 
CMe–H···CAr (2.877 Å), CMe–H···p (2.905 Å), CMe–H···I (3.139 Å), 
CCH2Cl2–H···CAr (2.872 Å), CCH2Cl2–H···p (2.737 Å), CCH2Cl2–H···O 
(2.697 Å), CAr–H···O (2.679 Å), CAr–H···CAr (average 2.878 Å), 
CMe···CAr (3.376 Å), CMe···O (3.150 Å) and CAr···O (3.182 Å). 
Its molecular structure is shown in Figure 1 and selected interatomic 
distances are listed in Table 1. The compound 1·CH2Cl2 consists 
of a [Cu4I4] core supported by four An3As ligands. Each copper 
atom adopts a tetrahedral environment [Cu@I3As], which is 
represented by three iodine atoms and one arsenic atom. In 1·CH2Cl2 
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e cluster [Cu4I4(AsAn3)4] was synthesized in 82% 
eaction of tris( p-anisyl)arsine (AsAn3 ) with CuI. 
emperature, this cluster exhibits bright yellow-
horescence ( lmax = 546 nm) with the quantum 
and 4.1 mmms decay time.

pper(i) complexes, tris(p-anisyl)arsine, cubane-like clusters, photoluminescence, crystal structure.

†	 Crystal data for 1·CH2Cl2. C84H84As4Cu4I4O12·CH2Cl2 (M = 2431.87), 
triclinic, space group P1̄, a = 12.9602(8), b = 15.4260(9) and c = 24.2353(15) Å, 
a = 86.713(2)°, b = 81.975(3)°, g = 89.061(2)°, V = 4789.7(5) Å3, Z = 2, 
T = 200 K, m(MoKa) = 3.645 mm−1, dcalc = 1.686 g cm−3. Total of 58510 
reflections were measured, and 18813 independent reflections (Rint = 0.070) 
were used in the further refinement. The refinement converged to 
wR2 = 0.1877 and GOF = 1.014 for all independent reflections [R1 = 0.0668 
was calculated against F for 13006 observed reflections with I > 2s(I)]. 
Single crystals of 1·CH2Cl2 were grown by diffusion of hexane vapor into 
an EtCN/CH2Cl2 solution overnight. The data were collected on a Bruker 
Kappa Apex  II CCD diffractometer using j,w-scans of narrow (0.5°) 
frames with MoKa radiation (l = 0.71073 Å) and a graphite mono
chromator. The structures were solved by direct methods (SHELXL97) and 
refined by the full-matrix least-squares anisotropic-isotropic (for H atoms) 
procedure using the SHELXL-2014/7 program.33 Absorption corrections 
were applied by the empirical multiscan method using the SADABS 
program.34 The positions of hydrogen atoms were calculated in the riding 
model. 
	 CCDC 2222588 contains the supplementary crystallographic data for 
this paper. These data can be obtained free of charge from The Cambridge 
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk.
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such Cu···Cu distances as Cu(1)–Cu(2) [2.7570(17) Å],  
Cu(2)–Cu(3) [2.7194(18) Å] and Cu(2)–Cu(4) [2.7968(17) Å] 
are shorter than the sum of the van der Waals radii of Cu (2.80 Å). 
At the same time, some of them, Cu(1)–Cu(3) [2.8241(17) Å] 
and Cu(1)–Cu(4) [2.8459(18) Å], are close to this value, which 
indicates metallophilic interactions. The Cu–As (average 2.37 Å), 
Cu–I (average 2.69 Å) and Cu···Cu (average 2.82 Å) distances in 
1·CH2Cl2 are comparable with the literature values for related 
[Cu4I4] arsine complexes.25–27 It is noteworthy that the Cu···Cu 
distances in 1·CH2Cl2 are significantly shorter than the corresponding 
values [dCu···Cu up to 3.317(1) Å] for the related complex 
[Cu4I4(An3P)4],18 whereas the Cu–I distances are very similar to 
those in [Cu4I4(An3P)4] (average 2.69 Å).

Under UV irradiation at 298 K, the powder of 1·CH2Cl2 
exhibits bright photoluminescence (PL) with a quantum yield of 
35% (lex = 330 nm). The normalized emission and excitation 
spectra at 298 K and the temperature-dependent PL spectra are 
shown in Figure 2. According to these data, the PL spectrum of 
1·CH2Cl2 appears as a broad band with lmax = 546 nm. Upon 
cooling from 298 to 77 K [Figure 2(b)], the emission maximum 
undergoes a bathochromic shift by ∼26 nm, which can be explained 
by low-temperature compression of the [Cu4I4] core, which 
causes a slight decrease of Cu···Cu distances. These changes are 
accompanied by a visual change in the PL color from green to 

yellow-green (lmax = 572 nm). Interestingly, only one low-
energy emission band is observed for 1·CH2Cl2. On the contrary, 
cubic Cu4I4 clusters surrounded by N- or P-donor ligands, in 
particular [Cu4I4(An3P)4], demonstrate dual-mode emission 
represented by high-energy and low-energy emission bands 
belonging to 3(M+X)LCT and 3CC (cluster-centered) states, 
respectively.18 The absence of a high-energy band at low temperature 
suggests that the luminescence of 1·CH2Cl2 probably belongs to 
the 3CC type phosphorescence. The PL decay time at 298 K is 
4.1 ms. At 77 K, the PL lifetime sharply increases to 167 ms, 
which is comparable with the lifetimes for known Cui arsine 
complexes at this temperature.27

In summary, a new Cui arsine complex [Cu4I4(AsAn3)4] was 
synthesized and characterized. At ambient temperature, it 
exhibits a bright yellow-green luminescence, tentatively assigned 
to cluster-centered phosphorescence.

This work was supported by the Ministry of Science and Higher 
Education of the Russian Federation (project nos. 121031700321-3, 
121031700313-8 and 1021051503141-0-1.4.1).
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Figure  1  (a) Molecular structure of 1·CH2Cl2. The H atoms of the arene 
rings and the CH2Cl2 solvate molecule are omitted for clarity. (b) Structure 
of the [Cu4I4] core in 1·CH2Cl2 with coordinated As atoms. p-Anisyl 
substituents in arsine ligands are not shown.

Table  1  Selected interatomic distances in 1·CH2Cl2.

Bond Cu–Cu/Å Bond Cu–I/Å Bond Cu–I/Å Bond Cu–As/Å

Cu(1) – Cu(2) 2.7570(17) Cu(2) –I(1) 2.6765(13) Cu(1) –I(3) 2.6625(14) Cu(1) –As(2) 2.3683(15)
Cu(1) – Cu(3) 2.8241(17) Cu(4) –I(1) 2.7019(14) Cu(3) –I(3) 2.6724(14) Cu(2) –As(3) 2.3670(15)
Cu(1) – Cu(4) 2.8459(18) Cu(1) –I(1) 2.7028(14) Cu(2) –I(3) 2.6860(14) Cu(3) –As(4) 2.3730(16)
Cu(2) – Cu(3) 2.7194(18) Cu(3) –I(2) 2.6767(15) Cu(1) –I(4) 2.6621(14) Cu(4) –As(1) 2.3877(15)
Cu(2) – Cu(4) 2.7968(17) Cu(4) –I(2) 2.6879(14) Cu(3) –I(4) 2.6973(15)
Cu(3) – Cu(4) 2.9899(18) Cu(2) –I(2) 2.6942(15) Cu(4) –I(4) 2.7013(15)
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Figure  2  (a) Normalized (1) emission and (2) excitation spectra of solid 
1·CH2Cl2 at 298 K. (b) Temperature-dependent emission spectra ( lex = 320 nm) 
of solid 1·CH2Cl2 recorded at (1) 77, (2) 100, (3) 125, (4 ) 150, (5) 175, 
(6 ) 200, (7 ) 225, (8) 250, (9) 275 and (10) 300 K.
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