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e scaffold not only is found in a wide variety 
ts but also is used as building blocks for a 
e anticancer drugs.1–7 Recently, effective 
us heterocyclic polyalkoxy derivatives such 
ombretastatin A4,8 podophyllotoxin9 and 
ere successfully developed in our laboratory 
lapiol 2 aldehydes10–12 obtained by ozonolysis 
koxy)(allyl)benzenes 3.13 
and, quinolines are found in many natural 

ave diverse and potent pharmacological 
- and tetraalkoxy-substituted furanoquinolines 
tumor activity,16,17 while natural antitumor 
nigrin18 and lavendamycin19 include the key 
ring system. Our own interest is to obtain 
tetraalkoxyquinolines which are practically 

ehydes 1 and 2 afforded nitro aldehydes 4, 5 in 
me 1). Their condensation with malonic acid 
in methanol with the addition of alumina 
ylamine (for 6b,c) as catalysts led to the 
oevenagel products 7a–c and 8a–c in good 
ely, when the reactions were conducted with 
 6d, the corresponding products could not be 

and the scope of the synthesis of compounds 
es 1, 2, we have explored an alternative route 
evenagel condensation of aldehydes 1, 2 with 
rivatives 6a–d20,21 followed by nitration 
t, the nitration of the Knoevenagel products 

uly afforded nitro compounds 7a–d and 8a,b, 
–92% yields. However, attempted nitration of 
ly substances.
itro compounds 7a,d with zinc dust in acetic 
2-aminoquinolines 11 and 15, respectively. 
ctions with 7b,c gave the mixtures of  
 and the corresponding 2-aminoquinolines 
me 3). Unlike derivatives 7a–d, reductive 

cyclization of nitro compounds 8a–c proceeded more 
selectively  to furnish 2-aminoquinoline derivatives 16a–c as 
single products, although in moderate yields.

Another route to tetraalkoxylated quinolines was based on the 
Vilsmeier cyclization of acetanilides with DMF and POCl3.22 
Initially, polyalkoxybenzoic acids 17a–d were synthesized by 
oxidation of the corresponding aldehydes.13 Our approach to 
acetanilides 18a–d was predicated upon a novel cascade of 
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ative procedures for the synthesis of 
5,6,7,8-tetraalkoxyquinolines starting from 
ldehydes are reported. The latter are 
ant (polyalkoxy)(allyl)benzenes, secondary 
rsley and dill seeds.
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Scheme  1  Reagents and conditions: i, HNO3 (98%), CHCl3, 0–5 °C 
(ref. 11); ii, Al2O3, MeOH, 20–25 °C, 4 h (for 6a); iii, Et3N, MeOH, reflux, 
2–4 h (for 6b,c).
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transformations via one-pot procedure comprising the Curtius 
rearrangement followed by acylation with acetic anhydride 
(Scheme 4). The action of diphenylphosphoryl azide on acids 
17a–d, acidic rearrangement of the intermediate acyl azides to 
isocyanates, followed by hydrolysis led to aniline hydrochlorides. 
Final acetylation of anilines was performed without isolation of 
the anilines to get the corresponding acetanilides 18a–d. The 

Vilsmeier-type cyclization of acetanilides 18a–d to previously 
unknown polyalkoxysubstituted 2-chloroquinoline-3-carb
aldehydes 19a–c was performed according to literature 
procedure22,23 (see Scheme 4). However, the cyclization of 
acetanilide 18d gave a complex mixture of products, and the 
desired compound 19d was isolated only with 2% yield.

With the required compounds 19a–c in hand, our efforts were 
aimed to prepare new tetraalkoxyquinoline derivatives 
(Scheme 5). Oxidation of aldehydes with iodine in methanol24 
yielded methyl esters of acids 20a–c. The condensation with 
hydroxylamine hydrochloride25 afforded oximes 21a–c. 
Interestingly, condensation of 19b with hydroxylamine 
hydrochloride gave a E/Z isomer mixture, which was detected 
by NMR. Reduction of aldehydes with NaBH4 afforded the 
desired alcohols 22a–c in high yields. Oxidation of 19a,c with 
iodine in the presence of excess of ammonia26 led to nitriles 
23a,c. However, under identical conditions nitrile 23b could not 
be obtained from 19b. 

In conclusion, using developed preparative methods a number 
of building blocks containing 2,3-disubstituted tetraalkoxy
quinoline fragment were synthesized starting from apiol 
aldehyde 1, dillapiol aldehyde 2, and 2,3,4,5-tetra
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Scheme  2  Reagents and conditions: i, Et3N, MeOH, reflux, 1–4 h  
(for 9a–d, 10a–c); ii, piperidine/AcOH, toluene, reflux, 3 h (for 9a–d, 10d); 
iii, CHCl3, HNO3 (98%), Ac2O, 0–5 °C.
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Scheme  3  Reagents and conditions: i, Zn, AcOH, 20–110 °C, 30 min.
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methoxybenzaldehyde. Due to high syntethic potential, these 
compounds may be regarded as key substances in many syntheses 
of quinoline-contaning natural products and their analogs.

Online Supplementary Materials
Supplementary data associated with this article can be found 

in the online version at doi: 10.1016/j.mencom.2023.06.013.
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