
A facile synthesis of (\pm)-15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂ methyl ester

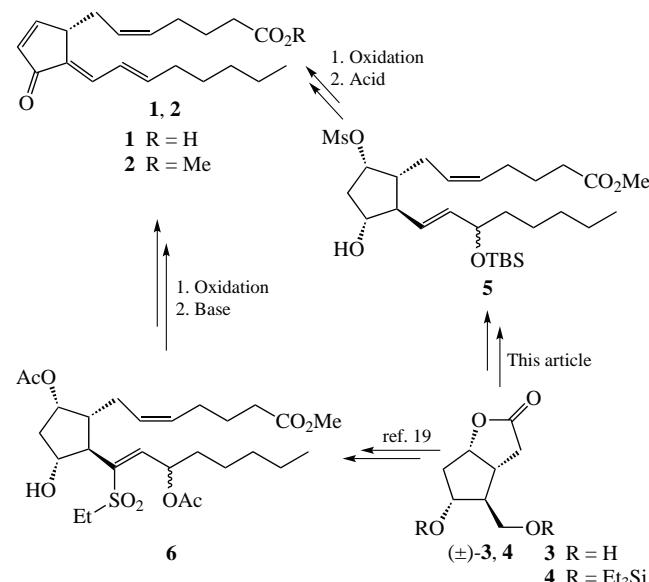
Zaynudin R. Makaev,* Nikolay S. Vostrikov, Natalya K. Selezneva and Mansur S. Miftakhov

*Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences,
450054 Ufa, Russian Federation. Fax: +7 347 235 6066; e-mail: z.makaev.orgsynthesis@gmail.com*

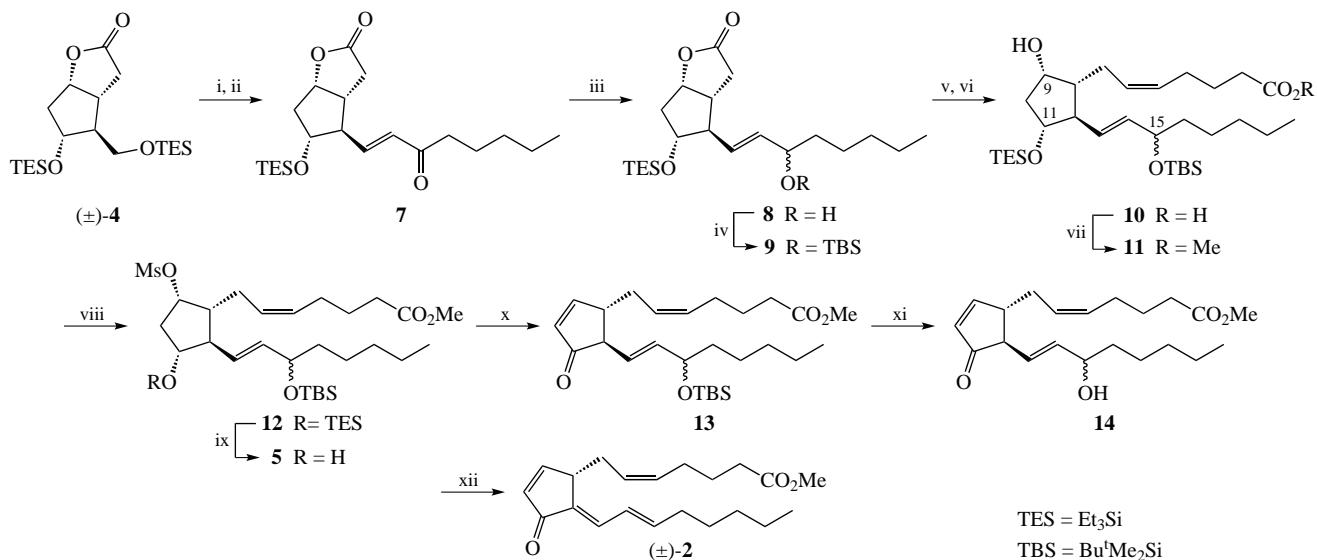
DOI: 10.1016/j.mencom.2023.06.012

A simple and facile synthesis of racemic 15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂ methyl ester from readily available Corey lactone diol in total eleven steps was suggested. The standard methods provided a pathway to a block with an integrated ω -chain and further to PGJ₂ methyl ester. The latter was smoothly converted to the target prostaglandin in the TsOH-CH₂Cl₂ medium when allylic alcohol moiety was transformed to exocyclic diene substituent conjugated with endocyclic enone system.

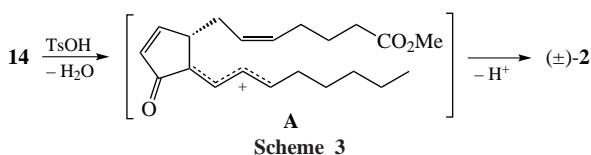
Keywords: Corey lactone diol, prostaglandin J₂ methyl ester, 15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂, diastereoselective reaction, dehydration, dienes.


In the series of prostaglandins (PGs), the cross-conjugated cyclopentenone prostaglandins (cyPG) attract attention due to not only their unique structure but also their bioactivity profile differing from those of the classical PGs.¹ Of the cross-conjugated cyPGs, 15-deoxy- $\Delta^{12,14}$ -prostaglandin J₂ (15dPGJ₂) **1**, a well-known ligand agonist of PPAR_γ nucleus receptors responsible, *e.g.*, for gene transcription, apoptosis initiation, viral replication, and inflammatory modulation,^{2,3} is the most-studied and popular agent. As a powerful Michael acceptor, highly electrophilic cyPG **1** reacts with the SH groups of nucleus proteins, thereby disrupting their biochemical functions, which is ultimately a predetermining factor in the bioactivity.⁴ Note that unlike the majority of proinflammatory prostaglandins, 15dPGJ₂ exhibits anti-inflammatory properties.⁵

The first synthesis of 15dPGJ₂ **1** was performed by Sutton in 2003.⁶ In the following years, a number of papers have been published on the synthesis of **1** and its methyl ester **2** as well as their structurally related analogues.^{7–16} To a considerable extent, the interest in these compounds was supported by the growing need for biomedical studies.^{17,18} We have published two articles^{19,20} on this subject. Now we present an improved version of the previously reported¹⁹ approach to compound **2**, the previously obtained²¹ (\pm)-lactone diol **3** serving as the basic starting point in both approaches. The key steps in the approaches involve the transition to differently blocked hydroxy derivatives of compounds **5** and **6**, which give the target substance **2** after oxidation and elimination of the protective groups (Scheme 1).


In continuation of the alternative approach, bis-TES ether **4** (TES is triethylsilyl) was first entered in the sequence of reactions of chemoselective Swern oxidation and Horner-Wadsworth-Emmons olefination with dimethyl 2-oxoheptylphosphonate to give known²² enone **7** (Scheme 2). Subsequent steps of cerate (NaBH₄-CeCl₃) reduction of the keto group in enone **7** and TBS-protection of the allylic hydroxy substituent in **8** resulted in lactone **9**. To build the upper chain of PG, lactone **9** was reduced with Bu₂AlH to the lactol, which was Wittig-olefination with the ylide derived from 5-(triphenylphosphonio)pentanoic acid

bromide to give the corresponding Z-configured olefinic acid **10**. The latter was further converted to methyl ester **11**. After mesylation of the C⁹-OH group in **11**, selective hydrolysis of the TES protective group at C¹¹ in **12** followed by oxidation of the C¹¹-OH function with diacetoxy(phenyl)iodinane PhI(OAc)₂-TEMPO system afforded the PGJ₂ derivative **13**. At the final step, hydrolysis of the silyl protective group in **13** gave PGJ₂ methyl ester **14**, which was smoothly dehydrated to **2** in TsOH-CH₂Cl₂ medium.


Note that the stereoisomeric purity observed at the generation step (**14** \rightarrow **2** transition) of the diastereoisomeric system is explained by the reaction pathway through the flat homoallyl carbocation **A** (Scheme 3), which levels off the possible effect of isomerism in the hydroxy-bearing center, to give thermodynamically advantageous *E,E*-isomer **2**. Though this aspect is

Scheme 1

Scheme 2 Reagents and conditions: i, Swern oxidation; ii, dimethyl 2-oxoheptylphosphonate, NaH, THF; iii, NaBH4/CeCl3·7H2O, MeOH, 0 °C, 89%; iv, TBSCl, ImH, CH2Cl2, 86%; v, Bu2AlH, CH2Cl2, -78 °C; vi, Br-[Ph3P+(CH2)4COOH], NaHMDS, THF, -30 °C; vii, CH2N2, Et2O, 70% (3 steps); viii, MsCl, Et3N, CH2Cl2, 0 °C, 85%; ix, citric acid, THF-H2O, 85%; x, Ph1(OAc)2, TEMPO, CH2Cl2, 92%; xi, 40% HF (aq.), MeCN, 80%; xii, TsOH, CH2Cl2, 84%. NaHMDS = Na[N(SiMe3)2]; TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl oxyl.

Scheme 3

obvious, it was not addressed in the syntheses of **1** and **2** reported previously.

In general, the developed approach is based on the use of traditional PG methodologies and reagents. The noteworthy aspects include the **4 → 7** transition by selective oxidation of TMS and TES ethers suggested in the previous work,²² which allowed a significant reduction in the number of steps from the Corey lactone diol to enone **7**, and the method of selective hydrolysis of the TES ether at C¹¹ in the presence of TBS ether at C¹⁵ in compound **12**. The conditions for the exclusively stereoselective generation of the dienone system in the **14 → 2** transition were found. The suggested scheme of synthesis is simple and suitable for scaling and preparation of non-racemic α - and ω -modified analogues of compounds **1** and **2**.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.06.012.

References

- 1 D. S. Straus and C. K. Glass, *Med. Res. Rev.*, 2001, **21**, 185.
- 2 E. M. Brunoldi, G. Zanoni, G. Vidari, S. Sasi, M. L. Freeman, G. L. Milne and J. D. Morrow, *Chem. Res. Toxicol.*, 2007, **20**, 1528.
- 3 K. Uchida and T. Shibata, *Chem. Res. Toxicol.*, 2008, **21**, 138.
- 4 M. Suzuki, M. Mori, T. Niwa, R. Hirata, K. Furuta, T. Ishikawa and R. Novori, *J. Am. Chem. Soc.*, 1997, **119**, 2376.

- V. V. Loza, A. M. Gimazetdinov and M. S. Miftakhov, *Russ. J. Org. Chem.*, 2018, **54**, 1585 (*Zh. Org. Khim.*, 2018, **54**, 1575).
- J. F. Bickley, V. Jadhav, S. M. Roberts, M. G. Santoro, A. Steiner and P. W. Sutton, *Synlett*, 2003, **8**, 1170.
- K. M. Brummond, P. C. Sill and H. Chen, *Org. Lett.*, 2004, **6**, 149.
- H. P. Acharya and Y. Kobayashi, *Tetrahedron Lett.*, 2004, **45**, 1199.
- H. P. Acharya and Y. Kobayashi, *Tetrahedron*, 2006, **62**, 3329.
- N.-J. Kim, H. Moon, T. Park, H. Yun, J.-W. Jung, D.-J. Chang, D.-D. Kim and Y.-G. Suh, *J. Org. Chem.*, 2010, **75**, 7458.
- A. Yang, *PhD Thesis*, Pittsburgh, 2007.
- A. D. Baxter, F. Binns, T. Javed, S. M. Roberts, P. Sadler, F. Scheinmann, B. J. Wakefield, M. Lynch and R. F. Newton, *J. Chem. Soc., Perkin Trans. 1*, 1986, 889.
- J. Egger, S. Fischer, P. Bretscher, S. Freigang, M. Kopf and E. M. Carreira, *Org. Lett.*, 2015, **17**, 4340.
- M. Iqbal, P. Duffy, P. Evans, G. Cloughley, B. Allan, A. Lledó, X. Verdaguera and A. Riera, *Org. Biomol. Chem.*, 2008, **6**, 4649.
- G. Zanoni, Q. de Toma, F. Castronovo and G. Vidari, *J. Org. Chem.*, 2003, **68**, 6437.
- J. Li, T. S. Ahmed, C. Xu, B. M. Stoltz and R. H. Grubbs, *J. Am. Chem. Soc.*, 2019, **141**, 154.
- A. K. Kudva, N. Kaushal, S. Mohinta, M. J. Kennet, A. August, R. F. Paulson and K. S. Prabhu, *PLoS One*, 2013, **8**, e80622.
- E.-H. Kim and Y.-J. Surh, *Biochem. Pharmacol.*, 2006, **72**, 1516.
- N. S. Vostrikov, I. F. Lobko, D. U. Ishimova and M. S. Miftakhov, *Russ. J. Org. Chem.*, 2015, **51**, 1 (*Zh. Org. Khim.*, 2015, **51**, 9).
- A. M. Gimazetdinov, A. Z. Al'mukhametov and M. S. Miftakhov, *New J. Chem.*, 2022, **46**, 6708.
- G. A. Tolstikov, M. S. Miftakhov, F. A. Valeev, N. S. Vostrikov and R. R. Akhmetvaleev, *J. Org. Chem. USSR*, 1984, **20**, 200 (*Zh. Org. Khim.*, 1984, **20**, 221).
- M. S. Miftakhov, M. E. Adler, N. G. Komissarova and G. A. Tolstikov, *J. Org. Chem. USSR*, 1990, **26**, 1274 (*Zh. Org. Khim.*, 1990, **26**, 1476).

Received: 7th December 2022; Com. 22/7064