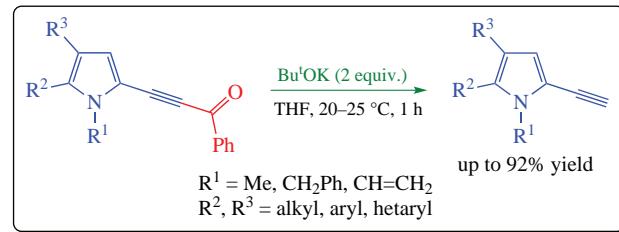


A facile synthesis of 2-ethynylpyrroles by Bu^tOK -assisted room temperature deprotection of 2-(acylethynyl)pyrroles

Denis N. Tomilin,^a Lyubov N. Sobenina,^a Alexander B. Trofimov,^{a,b} Alexandra M. Belogolova,^{a,c} Igor A. Ushakov,^a Nina S. Shaglaeva^d and Boris A. Trofimov^{*a}

^a A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russian Federation. Fax: +7 3952 41 9346; e-mail: boris_trofimov@irioch.irk.ru


^b Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, 664003 Irkutsk, Russian Federation

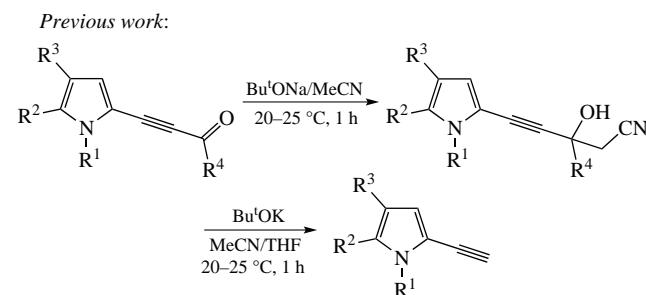
^c Faculty of Physics, Irkutsk State University, 664003 Irkutsk, Russian Federation

^d Institute of High Technologies, Irkutsk National Research Technical University, 664074 Irkutsk, Russian Federation

DOI: 10.1016/j.mencom.2023.06.005

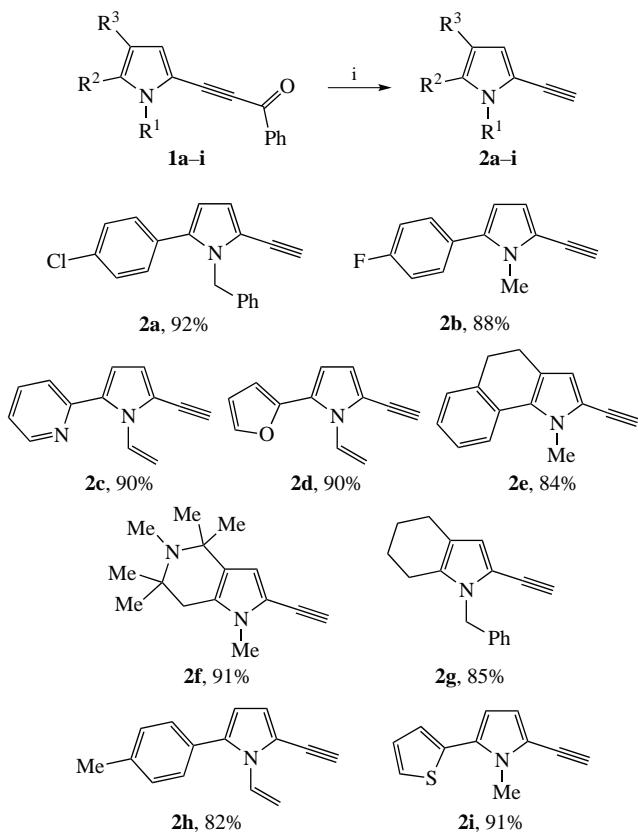
Available *N*-substituted 2-(acylethynyl)pyrroles undergo room temperature deprotection in the $\text{Bu}^t\text{OK}/\text{THF}$ system to give 2-ethynylpyrroles in 82–92% yields. Quantum-chemical calculations (B2PLYP/6-311G**//B3LYP/6-311G**+C-PCM/THF) show that the cleavage of ethynyl-acyl bond *via* the proton transfer from Bu^tOK with formation of potassium acylate and 2-methylpropene is thermodynamically much more preferred compared to alternative nucleophilic attack of *tert*-butoxide anion at the acyl carbon ($\Delta G = -35.1$ vs. -2.7 kcal mol⁻¹).

Keywords: (acylethynyl)pyrroles, ethynylpyrroles, terminal alkynes, deacylation, deprotection, yrones, pyrroles, potassium *tert*-butoxide.


Ethynylpyrroles are rewarding synthetic intermediates in the design of various drug-related and natural compounds, among which are antibiotic roseophilin, active against K562 human erythroid leukemia cells¹ and alkaloid insecticide quinolactacide.² These compounds are also employed in the syntheses of EGFR tyrosine kinase and HMG-CoA reductase inhibitors,³ dopamine D4 receptor ligands,⁴ and receptors for encapsulation of dihydrogenphosphate ions.⁵ Terminal ethynylpyrroles are used for the construction of low-toxic BODIPY fluorophores with high quantum yields for biological applications.⁶ They can be of interest for advanced materials science, *e.g.*, to devise the detectors of tetrahedral oxoanions (H_2PO_4^- and SO_4^{2-})⁷ and pyrophosphate anions.⁸ Besides, these pyrrole/acytelyne hybrids⁹ find application in the design of ultrasensitive fluorescent probes,¹⁰ photoswitchers,^{11–13} solar cells¹⁴ and thin-film transistors.¹⁵

Ethynylpyrroles can be synthesized by the cross-coupling of halopyrroles with acetylene compounds. The use of ethynylmagnesium chloride or ethynylzinc bromide in the Negishi reaction¹⁶ or alkynes with easily removable groups, like TMS/TIPS, in the reaction with halopyrroles (the Sonogashira cross-coupling),^{2,4,5,7,17–19} provides access to ethynylpyrroles with a terminal triple bond. The required halopyrroles are synthesized mostly by electrophilic halogenation of the pyrrole ring. However, due to low stability of halopyrroles²⁰ and complications in their preparation,^{4,21–29} this approach is rather limited. Less frequent is the synthesis of ethynylpyrroles (~50% yields for two steps) *via* the reaction of pyrrolecarbaldehydes first with $\text{CBr}_4/\text{PPh}_3$ and then with Bu^tLi at -78°C .^{1,6,30–32}

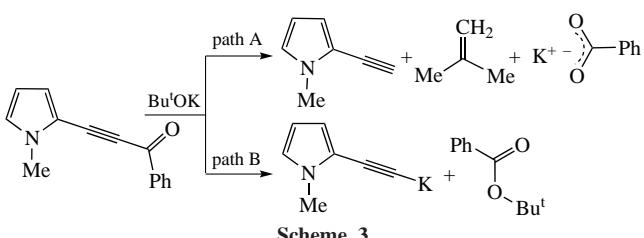
Recently,³³ we found that ethynylpyrroles could be synthesized by deprotection of 2-(acylethynyl)pyrroles with


Bu^tOK in MeCN. That synthesis was experimentally proved to involve the *retro*-Favorsky decomposition of intermediate tertiary acetylenic alcohols, adducts of the cyanomethylene carbanion attack to the carbonyl group of 2-(acylethynyl)pyrroles (Scheme 1).

Since 2-(acylethynyl)pyrroles are now readily available from the room temperature cross-coupling of pyrroles with 1-acyl-2-bromoacetylenes in solid Al_2O_3 ,^{34–38} the search for a direct and simpler procedure for their deprotection was justified. In this communication, we report that 2-(acylethynyl)pyrroles **1a–i** can be easily deprotected (room temperature, 1 h) under the action of Bu^tOK in THF to give directly, avoiding any intermediate, 2-ethynylpyrroles **2a–i** in high yields (Scheme 2).[†] Compounds

Scheme 1

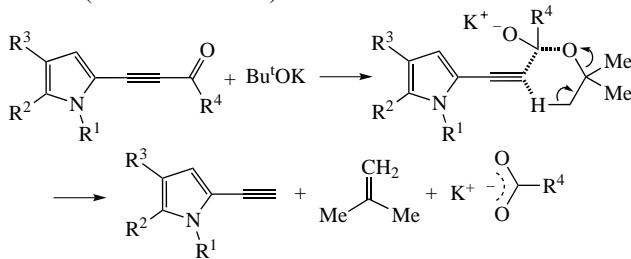
[†] General procedure for the synthesis of 2-ethynylpyrroles **2a–i**. The appropriate 2-(acylethynyl)pyrrole **1a–i** (1 mmol) was dissolved in dry THF (4 ml) under a nitrogen atmosphere and then Bu^tOK (224 mg, 2 mmol) was added in portions. The reaction mixture was stirred at room temperature for 1 h, and during this time it turned into an orange



Scheme 2 Reagents and conditions: i, 2-(acylethynyl)pyrrole (1 mmol), Bu'OK (2 mmol), THF (4 ml), nitrogen atmosphere, 20–25 °C, 1 h.

2a–f are new. The procedure thus developed allows not only ethynylpyrroles **2a–d,g–i** but also 2-ethynylbenzo[g]indole **2e** and 2-ethynylpyrrolo[3,2-c]pyridine **2f** to be efficiently synthesized. These results point out that the studied reaction may, in the long run, produce a wide substrate scope. Therefore, the present approach can be considered as a general strategy for the introduction of a terminal ethynyl moiety to the monocyclic pyrrole ring, and also to pyrrole annulated carbocyclic or heterocyclic systems.

Mechanistically, the Bu'OK-assisted deprotection of 2-(acylethynyl)pyrroles could proceed (Scheme 3) either as a cleavage of the bond between acetylenic and acyl moiety with the proton transfer from potassium *tert*-butoxide to form ethynylpyrroles, potassium carboxylate and 2-methylpropene (path A) or as the nucleophilic attack of *tert*-butoxide anion at the carbonyl group to give potassium derivatives of ethynylpyrroles and *tert*-butyl ester (path B).


To distinguish between these two mechanistic options, we have performed quantum-chemical calculations (B2PLYP/

suspension. The reaction mixture was then diluted with cold (0–5 °C) water (30 ml) and extracted with cold (0–5 °C) *n*-hexane (3 × 10 ml). The combined organic extracts were washed with water (3 × 5 ml) and dried over Na₂SO₄. The residue, after removing solvent, was purified by flash chromatography (dried SiO₂, *n*-hexane) to afford the corresponding 2-ethynylpyrroles **2a–i** in 82–92% yields.

6-311G**//B3LYP/6-311G**+C-PCM/THF) of the Gibbs free energy change (ΔG) for both cases. As followed from the calculations, both reactions are thermodynamically feasible with $\Delta G = -35.1$ and -2.7 kcal mol⁻¹, respectively, but path A is much more feasible than path B, since for the latter a significantly smaller exothermic effect was predicted (for details, see Online Supplementary Materials).

The proton transfer (path A) may occur *via* the cyclic transition state in which the attack of *tert*-butoxide anion at the carbonyl group and the proton migration from *tert*-butyl to acetylenic moiety occur simultaneously (Scheme 4). Path B also should be rejected since nothing of *tert*-butyl benzoate was detected in the reaction mixture while instead benzoic acid was isolated (after acidification).

Scheme 4

From the proved mechanism (path A) it follows that a part of the base should be consumed for the formation of potassium derivative of ethynylpyrrole. Therefore, an excess of Bu'OK is required for the process completion, so its 2-fold molar excess was employed. Otherwise (with equimolar ratio of the reactants) up 20% of the starting (acylethynyl)pyrrole remained unreacted.

In conclusion, we have found that 2-(acylethynyl)pyrroles are easily and directly, avoiding any intermediates, deacylated in Bu'OK in THF (room temperature, 1 h) to afford free 2-ethynylpyrroles in high yields. In view of the starting 2-(acylethynyl)pyrroles accessibility (room temperature ethynylation of pyrroles with 1-acyl-2-bromoacetylenes), the reaction developed may be considered as a gate to the general strategy to access ethynylpyrroles, to be used as intermediates for design of drugs and high-tech materials.

This work was supported by the research project plans in the State Register of the IPC RAS no. 121021000199-6. Authors acknowledge Baikal Analytical Center for collective use SB RAS for the equipment. A.B.T. gratefully acknowledges Grant no. FZZE-2020-0025 from the Ministry of Science and Higher Education of the Russian Federation. A.M.B. thanks the Irkutsk Supercomputer Center of SB RAS for providing computational resources of the HPC-cluster 'Akademik V. M. Matrosov'.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.06.005.

References

- 1 A. Y. Bitar and A. J. Frontier, *Org. Lett.*, 2009, **11**, 49.
- 2 K. Saito, M. Yoshida, H. Uekusa and T. Doi, *ACS Omega*, 2017, **2**, 4370.
- 3 J. K. Thottathil and W. S. Li, *Patent US 5298625A*, 1994.
- 4 C. Haubmann, H. Hübner and P. Gmeiner, *Bioorg. Med. Chem. Lett.*, 1999, **9**, 3143.
- 5 C. Lee, H. Lee, S. Lee, H.-G. Jeon and K.-S. Jeong, *Org. Chem. Front.*, 2019, **6**, 299.
- 6 C. Guérin, L. Jean-Gérard, G. Octobre, S. Pascal, O. Maury, G. Pilet, A. Ledoux and B. Andrioletti, *RSC Adv.*, 2015, **5**, 76342.
- 7 J. Y. C. Lim and P. D. Beer, *New J. Chem.*, 2018, **42**, 10472.
- 8 J. L. Sessler, J. Cai, H.-Y. Gong, X. Yang, J. F. Arambula and B. P. Hay, *J. Am. Chem. Soc.*, 2010, **132**, 14058.

9 T. Yasuda, T. Imase, Y. Nakamura and T. Yamamoto, *Macromolecules*, 2005, **38**, 4687.

10 J.-H. Liao, C.-T. Chen, H.-C. Chou, C.-C. Cheng, P.-T. Chou, J.-M. Fang, Z. Slanina and T. J. Chow, *Org. Lett.*, 2002, **4**, 3107.

11 Y. Li, Z. Zuo, H. Liu and Y. Li, *Patent CN 108298516A*, 2018.

12 A. Heynderickx, A. M. Kaou, C. Moustrou, A. Samat and R. Guglielmetti, *New J. Chem.*, 2003, **27**, 1425.

13 Y. Tanaka, T. Ishisaka, T. Koike and M. Akita, *Polyhedron*, 2015, **86**, 105.

14 H. Cheema, A. Baumann, E. K. Loya, P. Brogdon, L. E. McNamara, C. A. Carpenter, N. I. Hammer, S. Mathew, C. Risko and J. H. Delcamp, *ACS Appl. Mater. Interfaces*, 2019, **11**, 16474.

15 S. Debnath, S. Singh, A. Bedi, K. Krishnamoorthy and S. S. Zade, *J. Polym. Sci., Part A: Polym. Chem.*, 2016, **54**, 1978.

16 E. Negishi, C. Xu, Z. Tan and M. Kotora, *Heterocycles*, 1997, **46**, 209.

17 D. O. Martire, N. Jux, P. F. Aramendia, R. M. Negri, J. Lex, S. E. Braslavsky, K. Schaffner and E. Vogel, *J. Am. Chem. Soc.*, 1992, **114**, 9969.

18 B. Tu, B. Ghosh and D. A. Lightner, *Monatsh. Chem.*, 2004, **135**, 519.

19 A. Rana, S. Lee, D. Kim and P. K. Panda, *Chem. – Eur. J.*, 2015, **21**, 12129.

20 J. Bergman and T. Janosik, in *Modern Heterocyclic Chemistry*, eds. J. Alvarez-Builla, J. J. Vaquero and J. Barluenga, Wiley, Weinheim, 2011, vol. 1, ch. 4, pp. 269–376.

21 A. T. Blomquist and H. H. Wasserman, in *Organic Chemistry: A Series of Monographs*, eds. R. A. Jones and G. P. Bean, Academic Press, Cambridge, MA, 1977, vol. 34, pp. 129–140.

22 A. Gossauer, *Die Chemie der Pyrrole*, Springer, Berlin, Heidelberg, 2013.

23 M. D'Auria, E. De Luca, G. Mauriello, R. Racioppi and G. Sleiter, *J. Chem. Soc., Perkin Trans. 1*, 1997, 2369.

24 J. A. Smith, S. Ng and J. White, *Org. Biomol. Chem.*, 2006, **4**, 2477.

25 C. Liu, R. Dai, G. Yao and Y. Deng, *J. Chem. Res.*, 2014, **38**, 593.

26 S. Choudhary, J. Yadav, Mamta, A. P. Pawar, S. Vanaparthi, N. A. Mir, E. Iype, R. Sharma, R. Kant and I. Kumar, *Org. Biomol. Chem.*, 2020, **18**, 1155.

27 M. Yoshida, S. Easmin, M. Al-Amin, Y. Hirai and K. Shishido, *Tetrahedron*, 2011, **67**, 3194.

28 M. D'Hooghe, C. Buyck, J. Contreras and N. De Kimpe, *Org. Biomol. Chem.*, 2008, **6**, 3667.

29 E. Merkul, C. Boersch, W. Frank and T. J. J. Müller, *Org. Lett.*, 2009, **11**, 2269.

30 L. F. Tietze, G. Kettschau and K. Heitmann, *Synthesis*, 1996, 851.

31 Y. Kitano, T. Suzuki, E. Kawahara and T. Yamazaki, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 5863.

32 A. K. Morri, Y. Thummala and V. R. Doddi, *Org. Lett.*, 2015, **17**, 4640.

33 D. N. Tomilin, L. N. Sobenina, A. M. Belogolova, A. B. Trofimov, I. A. Ushakov and B. A. Trofimov, *Molecules*, 2023, **28**, 1389.

34 B. A. Trofimov, Z. V. Stepanova, L. N. Sobenina, A. I. Mikhaleva and I. A. Ushakov, *Tetrahedron Lett.*, 2004, **45**, 6513.

35 B. A. Trofimov and L. N. Sobenina, in *Targets in Heterocyclic Systems*, eds. O. A. Attanasi and D. Spinelli, Società Chimica Italiana, Roma, 2009, vol. 13, pp. 92–119.

36 L. N. Sobenina, D. N. Tomilin, O. V. Petrova, N. Gulia, K. Osowska, S. Szafert, A. I. Mikhaleva and B. A. Trofimov, *Russ. J. Org. Chem.*, 2010, **46**, 1373 (*Zh. Org. Khim.*, 2010, **46**, 1371).

37 D. N. Tomilin, M. D. Gotsko, L. N. Sobenina, I. A. Ushakov, A. V. Afonin, D. Yu. Soshnikov, A. B. Trofimov, A. B. Koldobsky and B. A. Trofimov, *J. Fluorine Chem.*, 2016, **186**, 1.

38 L. N. Sobenina and B. A. Trofimov, *Molecules*, 2020, **25**, 2490.

Received: 5th April 2023; Com. 23/7138