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33 we found that ethynylpyrroles could be 
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ButOK in MeCN. That synthesis was experimentally proved to 
involve the retro-Favorsky decomposition of intermediate 
tertiary acetylenic alcohols, adducts of the cyanomethylene 
carbanion attack to the carbonyl group of 2-(acylethynyl)pyrroles 
(Scheme 1). 

Since 2-(acylethynyl)pyrroles are now readily available from 
the room temperature cross-coupling of pyrroles with 1-acyl-2-
bromoacetylenes in solid Al2O3,34–38 the search for a direct and 
simpler procedure for their deprotection was justified. In this 
communication, we report that 2-(acylethynyl)pyrroles 1a–i can 
be easily deprotected (room temperature, 1 h) under the action of 
ButOK in THF to give directly, avoiding any intermediate, 
2-ethynylpyrroles 2a–i in high yields (Scheme 2).† Compounds 
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Scheme  1

† General procedure for the synthesis of 2-ethynylpyrroles 2a–i. 
The appropriate 2-(acylethynyl)pyrrole 1a–i (1 mmol) was dissolved in 
dry THF (4 ml) under a nitrogen atmosphere and then ButOK (224 mg, 
2 mmol) was added in portions. The reaction mixture was stirred 
at room temperature for 1 h, and during this time it turned into an orange
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2a–f are new. The procedure thus developed allows not only 
ethynylpyrroles 2a–d,g–i but also 2-ethynylbenzo[g]indole 2e 
and 2-ethynylpyrrolo[3,2-c]pyridine 2f to be efficiently 
synthesized. These results point out that the studied reaction 
may, in the long run, produce a wide substrate scope. Therefore, 
the present approach can be considered as a general strategy for 
the introduction of a terminal ethynyl moiety to the monocyclic 
pyrrole ring, and also to pyrrole annulated carbocyclic or 
heterocyclic systems.

Mechanistically, the ButOK-assisted deprotection of 
2-(acylethynyl)pyrroles could proceed (Scheme 3) either as a 
cleavage of the bond between acetylenic and acyl moiety with 
the proton transfer from potassium tert-butoxide to form 
ethynylpyrroles, potassium carboxylate and 2-methylpropene 
(path A) or as the nucleophilic attack of tert-butoxide anion 
at  the carbonyl group to give potassium derivatives of 
ethynylpyrroles and tert-butyl ester (path B). 

To distinguish between these two mechanistic options, we 
have performed quantum-chemical calculations (B2PLYP/ 

6-311G**//B3LYP/6-311G**+C-PCM/THF) of the Gibbs free 
energy change (∆G) for both cases. As followed from the 
calculations, both reactions are thermodynamically feasible with 
∆G = –35.1 and –2.7 kcal mol–1, respectively, but path A is 
much more feasible than path B, since for the latter a significantly 
smaller exothermic effect was predicted (for details, see Online 
Supplementary Materials). 

The proton transfer (path A) may occur via the cyclic 
transition state in which the attack of tert-butoxide anion at the 
carbonyl group and the proton migration from tert-butyl to 
acetylenic moiety occur simultaneously (Scheme 4). Path B also 
should be rejected since nothing of tert-butyl benzoate was 
detected in the reaction mixture while instead benzoic acid was 
isolated (after acidification).

From the proved mechanism (path A) it follows that a part of 
the base should be consumed for the formation of potassium 
derivative of ethynylpyrrole. Therefore, an excess of ButOK is 
required for the process completion, so its 2-fold molar excess 
was employed. Otherwise (with equimolar ratio of the reactants) 
up 20% of the starting (acylethynyl)pyrrole remained unreacted. 

In conclusion, we have found that 2-(acylethynyl)pyrroles 
are  easily and directly, avoiding any intermediates, deacylated 
in  ButOK in THF (room temperature, 1 h) to afford free 
2-ethynylpyrroles in high yields. In view of the starting 
2-(acylethynyl)pyrroles accessibility (room temperature 
ethynylation of pyrroles with 1-acyl-2-bromoacetylenes), the 
reaction developed may be considered as a gate to the general 
strategy to access ethynylpyrroles, to be used as intermediates 
for design of drugs and high-tech materials. 
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