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Available N-substituted 2-(acylethynyl)pyrroles undergo
room temperature deprotection in the Bu'OK/THF system
to give 2-ethynylpyrroles in 82-92% yields. Quantum-
chemical calculations (B2PLYP/6-311G**//B3LYP/
6-311G**+C-PCM/THF) show that the cleavage of ethynyl-
acyl bond viathe proton transfer from ButOK with formation
of potassium acylate and 2-methylpropene is thermo-
dynamically much more preferred compared to alternative
nucleophilic attack of tert-butoxide anion at the acyl carbon
(AG =-35.1 vs. 2.7 kcal mol2).
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Ethynylpyrroles are rewarding synthetic intermediates in the
design of various drug-related and natural compounds, among
which are antibiotic roseophilin, active against K562 human
erythroid leukemia cells! and alkaloid insecticide quino-
lactacide.? These compounds are also employed in the syntheses
of EGFR tyrosine kinase and HMG-CoA reductase inhibitors,3
dopamine D4 receptor ligands,* and receptors for encapsulation
of dihydrogenphosphate ions.> Terminal ethynylpyrroles are
used for the construction of low-toxic BODIPY fluorophores
with high quantum yields for biological applications.® They can
be of interest for advanced materials science, e.g., to devise the
detectors of tetrahedral oxoanions (H,PO; and SO2)7 and
pyrophosphate anions.® Besides, these pyrrole/acetylene hybrids®
find application in the design of ultrasensitive fluorescent
probes,’® photoswitchers,12-13 solar cells!* and thin-film
transistors.1®

Ethynylpyrroles can be synthesized by the cross-coupling
of halopyrroles with acetylene compounds. The use of
ethynylmagnesium chloride or ethynylzinc bromide in the
Negishi reaction® or alkynes with easily removable groups, like
TMS/TIPS, in the reaction with halopyrroles (the Sonogashira
cross-coupling),245717-19 provides access to ethynylpyrroles
with a terminal triple bond. The required halopyrroles are
synthesized mostly by electrophilic halogenation of the pyrrole
ring. However, due to low stability of halopyrroles?® and
complications in their preparation,*2-2° this approach is rather
limited. Less frequent is the synthesis of ethynylpyrroles (~50%
yields for two steps) via the reaction of pyrrolecarbaldehydes
first with CBr,/PPh, and then with Bu"Li at —78 °C.1.6.30-32

Recently,%® we found that ethynylpyrroles could be
synthesized by deprotection of 2-(acylethynyl)pyrroles with
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Bu'OK in MeCN. That synthesis was experimentally proved to
involve the retro-Favorsky decomposition of intermediate
tertiary acetylenic alcohols, adducts of the cyanomethylene
carbanion attack to the carbonyl group of 2-(acylethynyl)pyrroles
(Scheme 1).

Since 2-(acylethynyl)pyrroles are now readily available from
the room temperature cross-coupling of pyrroles with 1-acyl-2-
bromoacetylenes in solid Al,05,34-38 the search for a direct and
simpler procedure for their deprotection was justified. In this
communication, we report that 2-(acylethynyl)pyrroles la—i can
be easily deprotected (room temperature, 1 h) under the action of
Bu'OK in THF to give directly, avoiding any intermediate,
2-ethynylpyrroles 2a—i in high yields (Scheme 2)." Compounds
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T General procedure for the synthesis of 2-ethynylpyrroles 2a-i.
The appropriate 2-(acylethynyl)pyrrole 1a—i (1 mmol) was dissolved in
dry THF (4 ml) under a nitrogen atmosphere and then Bu'OK (224 mg,
2mmol) was added in portions. The reaction mixture was stirred
at room temperature for 1 h, and during this time it turned into an orange

— 458 —



Mendeleev Commun., 2023, 33, 458-460

R3
N ﬂ\
I Rl
la-i 2a-i
/ \
cl NS ¢
kF’h
2a, 92% 2b, 88%
B [\ 7\
O~ o=~
N < Ve
2¢, 90% 2d, 90% 2e, 84%
e\ Me
Xﬁi\ W
Ph
2f,91% 29, 85%
B A
Me NS NT TS
S |
K Me
2h, 82% 2i, 91%

Scheme 2 Reagents and conditions: i, 2-(acylethynyl)pyrrole (1 mmol),
BUu'OK (2 mmol), THF (4 ml), nitrogen atmosphere, 20-25 °C, 1 h.

2a—f are new. The procedure thus developed allows not only
ethynylpyrroles 2a-d,g—i but also 2-ethynylbenzo[g]indole 2e
and 2-ethynylpyrrolo[3,2-c]pyridine 2f to be efficiently
synthesized. These results point out that the studied reaction
may, in the long run, produce a wide substrate scope. Therefore,
the present approach can be considered as a general strategy for
the introduction of a terminal ethynyl moiety to the monocyclic
pyrrole ring, and also to pyrrole annulated carbocyclic or
heterocyclic systems.

Mechanistically, the Bu'OK-assisted deprotection of
2-(acylethynyl)pyrroles could proceed (Scheme 3) either as a
cleavage of the bond between acetylenic and acyl moiety with
the proton transfer from potassium tert-butoxide to form
ethynylpyrroles, potassium carboxylate and 2-methylpropene
(path A) or as the nucleophilic attack of tert-butoxide anion
at the carbonyl group to give potassium derivatives of
ethynylpyrroles and tert-butyl ester (path B).

To distinguish between these two mechanistic options, we
have performed quantum-chemical calculations (B2PLYP/
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suspension. The reaction mixture was then diluted with cold (0-5 °C)
water (30 ml) and extracted with cold (0-5 °C) n-hexane (3x 10 ml). The
combined organic extracts were washed with water (3x5 ml) and dried
over Na,SO,. The residue, after removing solvent, was purified by flash
chromatography (dried SiO,, n-hexane) to afford the corresponding
2-ethynylpyrroles 2a—i in 82-92% vyields.

6-311G**//B3LYP/6-311G**+C-PCM/THF) of the Gibbs free
energy change (AG) for both cases. As followed from the
calculations, both reactions are thermodynamically feasible with
AG=-35.1 and -2.7 kcal mol~?, respectively, but path A is
much more feasible than path B, since for the latter a significantly
smaller exothermic effect was predicted (for details, see Online
Supplementary Materials).

The proton transfer (path A) may occur via the cyclic
transition state in which the attack of tert-butoxide anion at the
carbonyl group and the proton migration from tert-butyl to
acetylenic moiety occur simultaneously (Scheme 4). Path B also
should be rejected since nothing of tert-butyl benzoate was
detected in the reaction mixture while instead benzoic acid was
isolated (after acidification).
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Scheme 4

From the proved mechanism (path A) it follows that a part of
the base should be consumed for the formation of potassium
derivative of ethynylpyrrole. Therefore, an excess of Bu'OK is
required for the process completion, so its 2-fold molar excess
was employed. Otherwise (with equimolar ratio of the reactants)
up 20% of the starting (acylethynyl)pyrrole remained unreacted.

In conclusion, we have found that 2-(acylethynyl)pyrroles
are easily and directly, avoiding any intermediates, deacylated
in BU'OK in THF (room temperature, 1h) to afford free
2-ethynylpyrroles in high vyields. In view of the starting
2-(acylethynyl)pyrroles  accessibility — (room  temperature
ethynylation of pyrroles with 1-acyl-2-bromoacetylenes), the
reaction developed may be considered as a gate to the general
strategy to access ethynylpyrroles, to be used as intermediates
for design of drugs and high-tech materials.
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Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2023.06.005.
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