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According to the proposed structure of aggregates [Figure 1(g)] 
and the visual observations above, the system behaves as a 
polypeptide and, therefore, like a polyelectrolyte should possess 
an isoelectric point. Indeed, turbidimetric titration of the initial 
CSS solution (Figure 2) demonstrated an initial increase in 
turbidity with growth of pH as well as a maximum at pH 5.5 
followed by a decline. The ζ-potential measurement verified these 
data (Figure S1, Online Supplementary Materials). Aggregates in 
the CSS solution are positively charged in acidic medium and 
acquire a negative charge in the alkaline region. Their ζ-potential 
tends to zero at isoelectric point and after pH 7.26 with a minimum 
value of –62.4 mV it starts growing towards zero.   

The UV spectra of the systems (Figure 3) reveal two 
characteristic absorption bands at ~310 and ~390 nm corresponding 
to Ag–Ag interactions20 in CYS–Ag+ complexes and the local 
plasmon resonance of AgNPs, respectively.17–19 Their intensity 
gradually diminishes with an increase in pH. Near the isoelectric 
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Figure 1 (a) Initial aq. CSS solution; (b),(c) result of gradual addition of 
KOH to CSS; (d) aq. AgNO3 solution; (e),(f) result of gradual addition of 
KOH to AgNO3; and (g) structure proposed for the aggregates in CSS 
solution according to our work.19



Mendeleev Commun., 2023, 33, 431–432

– 432 –

point the intensities are minimal as expected, while in alkaline 
region the bands are completely smoothed out, probably due to 
(i) suppression of the Ag–Ag interactions and further destruction 
of the shell as well as (ii) the AgNPs plasmon resonance band 
disappearance originating from the nanoparticles core 
aggregation.21 In the particle size distribution (Figure S2),  
a significant drop in the size occurs near the isoelectric point 
corresponding to more negative values of ζ-potential. 
Presumably, at the minimal aggregates size the linear charge 
density on their surface increases. Besides, there is a sharp 
growth of the particle size in alkaline region, which explains a 
decrease in the absolute negative values of ζ-potential and its 
tending to zero.     

AFM investigation of the system (Figure S3) reveals uniform 
aggregates with spherical/elliptical shape, the particles start to 
associate with an increase in pH from acidic to alkaline.   

Thus, the following mechanism of CSS aggregates 
transformations with the change in pH can be proposed. In acidic 
medium the particles have colloidal stability since their surface 
has a positive charge due to protonation of amino groups and 
partially the carboxyl ones, while hydrogen bonds formation 
between these groups keeps the stability of CYS–Ag+ complexes. 
Addition of an alkali shifts pH of the system to its isoelectric point 
where the particles aggregate, after that their surface acquires a 
negative charge due to deprotonation of the amino and carboxyl 
groups. At this point the aggregate shell starts being destroyed due 
to repulsion of the negatively charged carboxyl groups. The shell 
in initial CSS constructs has several layers of CYS–Ag+ complexes, 
which interact through hydrogen bonds between positively 
charged amino groups and negatively charged/protonated carboxyl 
groups, according to our hypothesis.19      

Cytotoxicity of the CSS solution was explored using the MTT 
test. CSS has pronounced toxic effect against MCF-7 breast 
carcinoma cells and no toxicity to normal fibroblasts (Figure 4). 
MCF-7 cell death rate decreases with an increase in pH. It is 
known that the membrane charge of cancer cells is more negative 
compared with the normal ones. Aggregates of CSS at low pH 
have a positive charge, therefore, their interaction with the 
membrane during cellular capture is stronger than for the 
aggregates bearing negative charge at alkaline pH. The particle 
size has a weak influence on the cancer cell inhibition. The CSS 
system can also be effective against A549 lung carcinoma cells.22

In summary, mixing an aqueous solution of CYS with silver 
nitrate led to the formation of polypeptide-like aggregates 
consisting of an AgNPs core and a CYS–Ag+ complexes shell. 
At low pH, the positively charged shell consists of several layers 
of CYS–Ag+ complexes held by hydrogen bonds, under these 
conditions the CSS solution has colloidal stability. At the 
isoelectric point the particles aggregate, while at higher pH the 
shell acquires negative charge and starts being destroyed. This 
behavior allows one to control toxic effect of the CSS solution to 
cancer cells.
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Figure 2 (a) CSS solution at pH (1) 2.57, (2) 3.96, (3) 5.61, (4) 6.10 and 
(5) 7.26. (b) The CSS solution turbidity vs. pH. 

Figure 3 UV spectra of CSS solution at pH (1) 2.57, (2) 2.92, (3) 3.48, 
(4) 3.96, (5) 4.34–6.10, (6) 6.83, (7) 7.26 and (8) 8.48. 
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Figure 4 Cytotoxicity of CSS solution to (a) MCF-7 cancer cells as well 
as (b) WI-38 normal fibroblasts at pH (1) 2.57, (2) 3.48, (3) 6.83, (4) 7.26 
and (5) 8.48, results of the MTT test.




