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This work presents a highly powerful and very simple
statistical method for creating predictive models based
on structure—property relationships. The algorithm was
implemented in the software CORRELATO, which demo
version is presented in Online Supplementary Materials.
Thisalgorithm wastested on asmall seriesof phthalocyanine
dyes to search for the relationship between optical limiting
effect and quantum chemical descriptorsresponsible for the
nonlinear optical properties of these absorbers.
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Within the framework of fundamental research, the search for
quantitative relationships between the elements of any
complicated system allows one to create forecasting models to
achieve a specific result without going deep into routine
procedures, which is necessary for efficient use of resources. In
the field of chemical sciences, in addition to the development of
synthetic strategies and the accumulation of data on a number of
practically important characteristics of objects, there is a search
for correlations between structures of substances and their
properties.! On the bases of such correlations, it becomes
possible not only to predict biological activity using QSAR/
QSPR methods (quantitative structure—activity/quantitative
structure—property relationship),2 but also to create entire
synthetic procedures parameterized in terms of qualitative or
quantitative structure-reactivity relationship (QSRR).2 In the
described and similar approaches, a general complex problem is
solved, which has the following trivial representation:

Output = Function of Dataset. 1)

The search for internal relationships (Function) within a lot of
different parameters (Dataset) that describe the system allows one
to reveal: 1) what influences what and 2) is it possible to predict
any property based on a set of molecular descriptors? The solution
of the proposed problem becomes possible using statistical
methods that involve a set of machine learning algorithms within
the framework of artificial intelligence. Thus, we are dealing with
the parametric analysis, which is a part of logical statistics
exploring the cumulative influence of various parameters of a
system on solving a specific problem.* The market offers a lot of
commercial solutions for statistical data analysis. Particularly,
ALTAIR® and DATADVANCE® allow engineers to
comprehensively implement parametric analysis for designing
materials for industries such as aerospace, oil and gas, automotive,
batteries and fuel cells, etc., as well as to explore their strength’
and to improve the efficiency of various devices.® It should be
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noted that commercial programs for multiparametric analysis are
expensive and sometimes inaccessible to most scientists.

This paper describes a simple, reliable, and high-performance
algorithm that allows researchers without special knowledge in
the field of mathematical statistics and the logic of creating
machine learning algorithms to find relationships between the
properties of chemical objects, which can include quantum-
chemical descriptors along with spectral response or biological
activity. For this purpose, the software CORRELATOQ® was
created. The description of this program is given in Online
Supplementary Materials.

The developed algorithm is based on the statistical analysis of
data summarized in a table. The rows and columns of this table
correspond to a set of chemicals and their properties, respectively.
Using such a table, at each iteration, two arrays Y and X are formed:
Y = {Y.}L,; and X = {X .}, which are sequences with an equal
number of elements N corresponding to the number of rows (or
substances in the table). Through a random combination of values at
the intersection of the current n™ row with selected columns, the
following calculations are performed at each iteration:

Y= Hyia and X, = ijb, @

I

where y; and x; are the proi)erties of the system (real values; for
example, experimental photocatalytic activity or calculated band
gap©); i and j are the numbers of columns in the table (integers;
for example, 1, 2, 3, etc.); and a and b are the degrees that are
randomly selected from the limited set of real numbers specified
by the researcher. Now it is needed to estimate how the obtained
sequences {Y,,} and {X.} correlate with each other. The simplest
way to do this is to calculate the r-Pearson coefficient:

B (Xi=X)(Yi-Y)
TR (G- XA

®)

where i is the index for the Y and X arrays; j is the iteration
number (the total number of iterations is set by the researcher);
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and X and Y are the arithmetic averages of X and Y arrays,
respectively. The Pearson correlation coefficient r can have
values from +1 to —1. The stronger the relationship between data
sets (the points are near the line), the greater the r value, while
the r value close to zero indicates the absence of correlation (the
points are scattered on the plane). When implementing the
described numerical algorithm, iterations with low (r < 0.5) and
negative r values are ignored, and among the rest a series is
selected having r values corresponding to the task (recommended
threshold: r > 0.85). As part of the optimization of solutions, it is
possible to apply additional conditions, such as selection by the
value of the R? factor when fitting the values of a user-defined
function. As a result, the user has a series of 2D diagrams, and
the option for detailed analysis allows one to identify the so-
called ‘outliers’ which are the elements that prevent convergence
to the specified criteria. These can be erroneous signs (columns)
or experimental errors (rows).°

The developed algorithm is very fast. For instance, 10 000
iterations for a limited series of five phthalocyanines la—e have
taken about 1 minute on a single processor. Dyes 1la—e belong to
stable J-type dimers, which demonstrate the nonlinear attenuation
of nanosecond pulsed laser beams.t

The nonlinear attenuation of high-intensity light to a safe
level underlies the creation of optical limiters represented as the
effective means of protection against laser radiation damage.’?
To date, there are no specific approaches to a comprehensive
assessment of all parameters of optical limiting in total as well as
to the selection of absorbers according to their efficiency in such
a process.

Table 1 shows the experimental data (Btpa, Eg, DR, Ka) and
quantum chemical parameters (Eg, W, a, f, y) calculated by the
FF-DFT method (FF = Finite external electric Field).*! The field
value of 0.001 a.u. was used to calculate «, 8, and y with
GAMESS (US) software3,
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Figure 1 Chemical structures of phthalocyanine J-dimers la—e. Dashed
lines show interactions between the macrocycles.

Table 1 Selected nonlinear optical parameters of the phthalocyanines la—e.

pye Preal B ppow wp B wAs igp

cm GW Jcm eV “laly|
la 340 0.05 460 7 215 1.37 126.6 28.87 34.00
1b 360 0.03 830 7.8 194 136 1269 28.64 35.89
1lc 228 0.03 930 6.4 1.82 1.38 116.6 28.68 34.85
d 57 0.65 72 32 180 139 1148 28.74 35.44
le 21 0.6 82 1.7 182 142 1141 29.05 35.64

aBrea is the two-photon absorption coefficient; E, is the limiting threshold;
DRis the dynamic range; ka is the attenuation factor; pLis the dipole moment;
E, is the band gap; « is the linear polarizability; g is the first
hyperpolarizability (esu); y is the second hyperpolarizability (esu).
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Figure 2 Solving a multiparametric problem [equations (2) and (3)] to
find the relationship between the experimental values of optical limiting
(Y asset) and quantum chemical descriptors (X asset) for phthalocyanine
J-dimers la—e: (a) two-photon absorption coefficient; (b) limiting threshold;
(c) dynamic range; (d) attenuation factor. Notation changes: 5: = -lgf;
y: = =lg|y|. The mesurement units of the quantities are given in Table 1.

The task is to find relationships between experimental and
theoretical data for predicting the optical limiting effect based on
the structure of dyes (i.e., without conducting an experiment).
Recently it was shown how information about the excitation of
dye molecules with electric fields can be used to predict the
effectiveness of the optical limiting response.'*

The results of solving the multiparametric task based on the
data collected in Table 1 are shown in Figure 2.

As can be seen from Figure 2, despite the high Pearson
coefficient (r > 0.95), the “‘experimental vs. theory’ relationship
is sometimes better described by a non-linear function. Thus, for
E, and k,, polynomials turned out to be the most preferable
[Figure 2(b),(d)]. The fact that such complicated correlations can
be found in a very simple way indicates the high importance of
the developed algorithm for providing the forecasting models.
But even now, using the dependences (Figure 2), one can
conclude that nickel 1d and cobalt 1e complexes are the least
productive absorbers in optical limiting. Magnesium complex 1a
is likely to fill an intermediate shelter when considering only the
dynamic range and limiting threshold, respectively. Finally, zinc
complex 1b can be considered the most demanded in terms of all
characteristics, and it is expedient to take it as a reference in the
future. Continuing these considerations, a universal formula for
the efficiency of optical limiting can be derived (Figure 3).
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Figure 3 Estimation of the overall efficiency of optical limiting for the

phthalocyanine J-dimers 1a—e based on multiparametric analysis [equations

(2) and (3)]. Notation changes: B: = -Igg; y: = —lg|y|. The measurement

units of the quantities are given in Table 1.

— 420 -



Mendeleev Commun., 2023, 33, 419-421

One of the most successful solutions to the multiparameter
problem [equations (2) and (3)] has allowed us to use the
following combination of parameters (Y axis in Figure 3) as the
optical limiting efficiency functional:

— I(AﬁTPA

o= DRE, (4)
The efficiency of optical limitation increases with an increase in
the nonlinearity of the medium (B+ps) and the degree of the laser
radiation energy attenuation (k,), while the parameters DR and
E, are both interconnected with each other and with those variables
in the numerator of the fraction (4). In this case, 0 — . ‘Bad’
absorber dyes exhibit low ks and fBpa Values, along with a
narrow dynamic range and a high threshold of activation. This
leads to the fact that o — 0.

As can be seen from Figure 3, copper complex 1c occupies an
intermediate position (o ~ 50). Magnesium and zinc complexes
1a,b can be considered equal. However, expression (3) does not
contain a linear absorption coefficient associated with the sample
concentration, since it was the same (1.44 cm™) for dyes la—eat
fixed transmission (0.75) and optical layer thickness (0.2 cm).
However, to flexibly adjust the predictive model, it is advisable
to consider the mentioned feature.

In conclusion, the simplest algorithm for searching for the
correlations between unlimited data sets has been created based
on the solution of a multiparametric analysis of the structure—
property relationship. As the input data, real values are used that
characterize the system according to a set of features chosen by
the researcher. An analysis of the obtained correlations has
allowed us to derive the analytical form of the functional
characterizing the total efficiency of optical limiting to sort the
absorbers within the considered series.

The developed algorithm is implemented as a computer
program CORRELATO (see Online Supplementary Materials)
and does not require special knowledge in the field of
mathematical statistics and related disciplines. A practical
solution to any problem is possible: the result is limited only by
the imagination of the researcher in terms of choosing the
properties of a chemical system. Now the development of
forecasting models has become available to a wide range of
experimenters. The described methodology can be used for a
wide range of chemists to solve a key problem i.e. the search for
the structure of a substance with a given activity or any
characteristics.

The development of the analytical algorithm and the creation
of software CORRELATO?® were financially supported by the
Russian Science Foundation (grant no. 21-73-20016). The
solution of practical multiparametric tasks was carried out within
the framework of the State Assignment no. FFSN-2021-0003
(‘Creation of compounds with given physicochemical
properties’) at the Joint Supercomputing Center of the Russian
Academy of Sciences (www.jscc.ru).

Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2023.04.038.
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