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mework of fundamental research, the search for 
relationships between the elements of any 
ystem allows one to create forecasting models to 
ecific result without going deep into routine 
hich is necessary for efficient use of resources. In 
emical sciences, in addition to the development of 
egies and the accumulation of data on a number of 
portant characteristics of objects, there is a search 
ns between structures of substances and their 
n the bases of such correlations, it becomes 
nly to predict biological activity using QSAR/
ds (quantitative structure–activity/quantitative 
erty relationship),2 but also to create entire 
edures parameterized in terms of qualitative or 

tructure–reactivity relationship (QSRR).3 In the 
 similar approaches, a general complex problem is 
 has the following trivial representation:

 Function of Dataset.	 (1)

for internal relationships (Function) within a lot of 
eters (Dataset) that describe the system allows one 
hat influences what and 2) is it possible to predict 
ased on a set of molecular descriptors? The solution 
sed problem becomes possible using statistical 
nvolve a set of machine learning algorithms within 
 of artificial intelligence. Thus, we are dealing with 
 analysis, which is a part of logical statistics 
cumulative influence of various parameters of a 
ing a specific problem.4 The market offers a lot of 
lutions for statistical data analysis. Particularly, 

nd DATADVANCE6 allow engineers to 
ly implement parametric analysis for designing 
dustries such as aerospace, oil and gas, automotive, 
uel cells, etc., as well as to explore their strength7 
e the efficiency of various devices.8 It should be 

noted that commercial programs for multiparametric analysis are 
expensive and sometimes inaccessible to most scientists.

This paper describes a simple, reliable, and high-performance 
algorithm that allows researchers without special knowledge in 
the field of mathematical statistics and the logic of creating 
machine learning algorithms to find relationships between the 
properties of chemical objects, which can include quantum-
chemical descriptors along with spectral response or biological 
activity. For this purpose, the software CORRELATO9 was 
created. The description of this program is given in Online 
Supplementary Materials.

The developed algorithm is based on the statistical analysis of 
data summarized in a table. The rows and columns of this table 
correspond to a set of chemicals and their properties, respectively. 
Using such a table, at each iteration, two arrays Y and X are formed: 
Y = {Yn}N

n = 1 and X = {Xn}N
n = 1, which are sequences with an equal 

number of elements N corresponding to the number of rows (or 
substances in the table). Through a random combination of values at 
the intersection of the current nth row with selected columns, the 
following calculations are performed at each iteration:

Yn = �y
i
a

i

 and Xn = �xj
b

j

, (2)

rj =
Σi = 1(Xi – )(Yi – ––

––
Y )N

[ ]Σi = 1(Xi – X)2(Yi –Y )2N ½
,            

.            

(3) 

s =
kA bTPA

DR E0
4

X

	 (2)

where yi and xj are the properties of the system (real values; for 
example, experimental photocatalytic activity or calculated band 
gap10); i and j are the numbers of columns in the table (integers; 
for example, 1, 2, 3, etc.); and a and b are the degrees that are 
randomly selected from the limited set of real numbers specified 
by the researcher. Now it is needed to estimate how the obtained 
sequences {Yn} and {Xn} correlate with each other. The simplest 
way to do this is to calculate the r-Pearson coefficient:
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i
a

i

 and Xn = �xj
b

j

, (2)

rj =
Σi = 1(Xi – )(Yi – ––

––
Y )N

[ ]Σi = 1(Xi – X)2(Yi –Y )2N ½
,            

.            

(3) 

s =
kA bTPA

DR E0
4

X
	 (3)

where i is the index for the Y and X arrays; j is the iteration 
number (the total number of iterations is set by the researcher);  
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resents a highly powerful and very simple 
ethod for creating predictive models based  
–property relationships. The algorithm was 
 in the software CORRELATO, which demo 
esented in Online Supplementary Materials. 

 was tested on a small series of phthalocyanine 
h for the relationship between optical limiting 
antum chemical descriptors responsible for the 
ical properties of these absorbers. 
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and X– and Y– are the arithmetic averages of X and Y arrays, 
respectively. The Pearson correlation coefficient r can have 
values from +1 to −1. The stronger the relationship between data 
sets (the points are near the line), the greater the r value, while 
the r value close to zero indicates the absence of correlation (the 
points are scattered on the plane). When implementing the 
described numerical algorithm, iterations with low (r < 0.5) and 
negative r values are ignored, and among the rest a series is 
selected having r values corresponding to the task (recommended 
threshold: r > 0.85). As part of the optimization of solutions, it is 
possible to apply additional conditions, such as selection by the 
value of the R2 factor when fitting the values of a user-defined 
function. As a result, the user has a series of 2D diagrams, and 
the option for detailed analysis allows one to identify the so-
called ‘outliers’ which are the elements that prevent convergence 
to the specified criteria. These can be erroneous signs (columns) 
or experimental errors (rows).9 

The developed algorithm is very fast. For instance, 10 000 
iterations for a limited series of five phthalocyanines 1a–e have 
taken about 1 minute on a single processor. Dyes 1a–e belong to 
stable J-type dimers, which demonstrate the nonlinear attenuation 
of nanosecond pulsed laser beams.11

The nonlinear attenuation of high-intensity light to a safe 
level underlies the creation of optical limiters represented as the 
effective means of protection against laser radiation damage.12 
To date, there are no specific approaches to a comprehensive 
assessment of all parameters of optical limiting in total as well as 
to the selection of absorbers according to their efficiency in such 
a process.

Table 1 shows the experimental data (bTPA, E0, DR, kA) and 
quantum chemical parameters (Eg, µ, a, b, g) calculated by the 
FF-DFT method (FF = Finite external electric Field).11 The field 
value of 0.001 a.u. was used to calculate a, b, and g with 
GAMESS (US) software13.

The task is to find relationships between experimental and 
theoretical data for predicting the optical limiting effect based on 
the structure of dyes (i.e., without conducting an experiment). 
Recently it was shown how information about the excitation of 
dye molecules with electric fields can be used to predict the 
effectiveness of the optical limiting response.14 

The results of solving the multiparametric task based on the 
data collected in Table 1 are shown in Figure 2.

As can be seen from Figure 2, despite the high Pearson 
coefficient (r > 0.95), the ‘experimental vs. theory’ relationship 
is sometimes better described by a non-linear function. Thus, for 
E0 and kA, polynomials turned out to be the most preferable  
[Figure 2(b),(d)]. The fact that such complicated correlations can 
be found in a very simple way indicates the high importance of 
the developed algorithm for providing the forecasting models. 
But even now, using the dependences (Figure 2), one can 
conclude that nickel 1d and cobalt 1e complexes are the least 
productive absorbers in optical limiting. Magnesium complex 1a 
is likely to fill an intermediate shelter when considering only the 
dynamic range and limiting threshold, respectively. Finally, zinc 
complex 1b can be considered the most demanded in terms of all 
characteristics, and it is expedient to take it as a reference in the 
future. Continuing these considerations, a universal formula for 
the efficiency of optical limiting can be derived (Figure 3).
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Figure 1 Chemical structures of phthalocyanine J-dimers 1a–e. Dashed 
lines show interactions between the macrocycles.

Table 1 Selected nonlinear optical parameters of the phthalocyanines 1a–e.a 

Dye
bTPA/ 
cm GW−1

E0/ 
J cm−2 DR kA µ/D

Eg/
eV

a/Å3 −lg b −lg| g |

1a 340 0.05 460 7 2.15 1.37 126.6 28.87 34.00

1b 360 0.03 830 7.8 1.94 1.36 126.9 28.64 35.89

1c 228 0.03 930 6.4 1.82 1.38 116.6 28.68 34.85

1d 57 0.65 72 3.2 1.80 1.39 114.8 28.74 35.44

1e 21 0.6 82 1.7 1.82 1.42 114.1 29.05 35.64

a bTPA is the two-photon absorption coefficient; E0 is the limiting threshold; 
DR is the dynamic range; kA is the attenuation factor; µ is the dipole moment; 
Eg is the band gap; a is the linear polarizability; b is the first 
hyperpolarizability (esu); g is the second hyperpolarizability (esu).
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Figure 2 Solving a multiparametric problem [equations (2) and (3)] to 
find the relationship between the experimental values of optical limiting  
(Y asset) and quantum chemical descriptors (X asset) for phthalocyanine 
J-dimers 1a–e: (a) two-photon absorption coefficient; (b) limiting threshold; 
(c) dynamic range; (d) attenuation factor. Notation changes: b: = −lg b;  
g: = −lg| g |. The mesurement units of the quantities are given in Table 1.

Figure 3 Estimation of the overall efficiency of optical limiting for the 
phthalocyanine J-dimers 1a–e based on multiparametric analysis [equations 
(2) and (3)]. Notation changes: b: = −lg b; g: = −lg| g |. The measurement 
units of the quantities are given in Table 1.
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One of the most successful solutions to the multiparameter 
problem [equations (2) and (3)] has allowed us to use the 
following combination of parameters (Y axis in Figure 3) as the 
optical limiting efficiency functional:

Yn = �y
i
a

i

 and Xn = �xj
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The efficiency of optical limitation increases with an increase in 
the nonlinearity of the medium (bTPA) and the degree of the laser 
radiation energy attenuation (kA), while the parameters DR and 
E0 are both interconnected with each other and with those variables 
in the numerator of the fraction (4). In this case, s → ∞. ‘Bad’ 
absorber dyes exhibit low kA and  bTPA values, along with a 
narrow dynamic range and a high threshold of activation. This 
leads to the fact that s → 0.

As can be seen from Figure 3, copper complex 1c occupies an 
intermediate position (s ≈ 50). Magnesium and zinc complexes 
1a,b can be considered equal. However, expression (3) does not 
contain a linear absorption coefficient associated with the sample 
concentration, since it was the same (1.44 cm–1) for dyes 1a–e at 
fixed transmission (0.75) and optical layer thickness (0.2 cm). 
However, to flexibly adjust the predictive model, it is advisable 
to consider the mentioned feature.

In conclusion, the simplest algorithm for searching for the 
correlations between unlimited data sets has been created based 
on the solution of a multiparametric analysis of the structure–
property relationship. As the input data, real values are used that 
characterize the system according to a set of features chosen by 
the researcher. An analysis of the obtained correlations has 
allowed us to derive the analytical form of the functional 
characterizing the total efficiency of optical limiting to sort the 
absorbers within the considered series.

The developed algorithm is implemented as a computer 
program CORRELATO (see Online Supplementary Materials) 
and does not require special knowledge in the field of 
mathematical statistics and related disciplines. A practical 
solution to any problem is possible: the result is limited only by 
the imagination of the researcher in terms of choosing the 
properties of a chemical system. Now the development of 
forecasting models has become available to a wide range of 
experimenters. The described methodology can be used for a 
wide range of chemists to solve a key problem i.e. the search for 
the structure of a substance with a given activity or any 
characteristics.

The development of the analytical algorithm and the creation 
of software CORRELATO9 were financially supported by the 
Russian Science Foundation (grant no. 21-73-20016). The 
solution of practical multiparametric tasks was carried out within 
the framework of the State Assignment no. FFSN-2021-0003 
(‘Creation of compounds with given physicochemical 
properties’) at the Joint Supercomputing Center of the Russian 
Academy of Sciences (www.jscc.ru).

Online Supplementary Materials
Supplementary data associated with this article can be found 

in the online version at doi: 10.1016/j.mencom.2023.04.038.
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