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rine compounds have received much attention in the 
t of pharmaceuticals and agrochemicals due to the 
fluorine to significantly increase its biological 
In particular, substances containing fluoroalkyl 
 the end of a saturated carbon chain may be needed 
the ability of fluorinated groups to modify lipophilic 

ational properties.3,4 There are several methods for 
sis of such compounds by deoxofluorination of 

acids,5 hydroperfluoroalkylation of terminal 
or by copper-catalyzed Csp3–Csp3 fluoroalkylation10 
owever, these approaches have been used mostly for 
tion of the CF3-group. Herein, we describe a method 
ctive radical deoxygenation of alcohols 1 resulting 
philic fluoroalkylation of carbonyl compounds.11–13

e discovery of the Barton–McCombie reduction of 
ith tributyltin hydride,14,15 several methods of radical 
ion and functionalization of alcohols have been 

developed employing various derivatizing groups such as 
N-hydroxypyridine-2-thione,16 xanthates,17,18 phosphites,19 
oxalates20 and 3,5-bis(trifluoromethyl)benzoates21 and using 
tris(trimethylsilyl)silane,22–24 and hydrazine25,26 as hydrogen 
donors; some of the reactions were carried out under 
photocatalytic conditions. Methods for the direct radical 
activation of free alcohols by transition metals27 and under 
photocatalytic28,29 conditions are also known.

We have recently investigated the activity of tetrafluoro
pyridine group in reactions of photocatalytic cleavage of  
C–S30–33 and C–O34 bonds. We have shown that ethers 2 obtained 
from fluorinated alcohols 1 would undergo photocatalytic 
substitution by dithiocarbamate anion (Scheme 1). The reaction 
presumably goes through a single-electron activation of the 
substrate followed by dissociation of the C–O bond leading to 
stable pyridinyloxy anion and an alkyl radical. Herein we present 
a method for the trapping of these radicals using a readily 
accessible source of hydrogen atom.

Compound 2a was selected as a model substrate and its 
reaction with different organic reducing agents under irradiation 
with 400 nm light emitting diodes was evaluated (Scheme 2). 
The reaction in acetonitrile with N,N-diisopropylethylamine 
(DIPEA) and substoichiometric amount of cyclohexanethiol 
(CySH) as a mediating radical quencher and 12-phenyl-12H-
benzo[b]phenothiazine (BPT)35 as a photocatalyst proceeded 
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with full conversion (Table 1, entry 1). However, the competitive 
transformation of 2a to difluoroalkene 4 and hydrodefluorination 
of the pyridine ring to form product 5 were observed (GC-MS 
analysis). The reaction in the presence of other photocatalysts 
such as 3DPA2FBN, [Ir(dtbbpy)(ppy)2]PF6 or Ir(ppy)3 were 
notably less efficient (entries 2–4). The screening of solvents 
showed that N,N-dimethylacetamide (DMA) was the best 
medium (entries 5–8). The reaction with pyridine–borane 
complex instead of DIPEA proceeded slowly with predominant 
formation of product 5 (entry 9), while the use of ascorbic acid/
triethylamine led to the target product 3a in low yield (entry 10). 
Finally, the best results were obtained with g-terpinene, a readily 
available terpene, which is expected to behave as efficient 
hydrogen atom source36–39 (entries 11, 12). The formation of by-
product 5 was mostly suppressed by addition of an equivalent 
amount of cesium fluoride, which, probably, inhibited 
dissociation of the corresponding radical anion to fluoride anion 
and an aryl radical. The reaction with g-terpinene proceeded 
even in the absence of photocatalyst, though the outcome of this 
process was rather poor (entry 13). In a control experiment, no 
reaction was observed in the absence of light (entry 14).

A series of compounds 2a–g was prepared from the 
corresponding fluorinated alcohols 1a–g by treatment with 
sodium hydride and pentafluoropyridine, and without purification 
they were subjected to the deoxygenation conditions (Scheme 3). 
Products 3a–g were isolated mostly in moderate to good yields. 
In cases of C2F5-substituted compounds, the formation of 

significant amounts (ca. 10–15%) of alkene by-products of type 
4 was detected by GC-MS analysis. The reaction of a-CF3-
substituted 4-benzyloxybenzylic alcohol led mostly to the 
products of the corresponding benzyl radical dimerization, and 
the reaction of a tertiary alcohol derived from acetophenone and 
TMSCF3 gave complex mixture. In a reaction of O-tetrafluoro
pyridine ether derived from menthol, a non-fluorinated secondary 
alcohol, the starting substrate remained unconsumed under 
standard photocatalytic conditions.

As it was shown in our previous work,34 compounds of type 2 
may be generated from the corresponding aldehydes by a 
procedure of consecutive trifluoromethylation/fluoride-mediated 
nucleophilic substitution with pentafluoropyridine. We applied 
this protocol for the synthesis of phosphonate 6, which was then 
deoxygenated with an overall yield of 90% based on the initial 
aldehyde (Scheme 4). This whole process may be carried out 
without isolation of 6 with 70% overall yield of 7.

Based on the literature data and our previous studies, we 
propose the following mechanism (Scheme 5). Substrate 2 is 
reduced by excited photocatalyst (PC), and the resulting radical 

Table  1  Optimization studies.

Entry Reductant (equiv.) Additive (equiv.) Catalyst (mol%) Solvent Ratio 2a/3a/4/5a Yield of 3a (%)b

  1 DIPEA (1.5) CySH (0.2) BPT (3) MeCN     0 : 74 : 21 : 5 39
  2 DIPEA (1.5) CySH (0.2) 3DPA2FBN (0.5) MeCN   <1 : 25 : 19 : 55 n.d.c

  3 DIPEA (1.5) CySH (0.2) [Ir(dtbbpy)(ppy)2]PF6 (0.25) MeCN   13 : 50 : 16 : 21 10
  4 DIPEA (1.5) CySH (0.2) Ir(ppy)3 (0.25) MeCN   65 : 15 : 0 : 20 n.d.c

  5 DIPEA (1.5) CySH (0.2) BPT (3) DMF   22 : 55 : 5 : 18 37
  6 DIPEA (1.5) CySH (0.2) BPT (3) DMA     0 : 86 : 4 : 10 44
  7 DIPEA (1.5) CySH (0.2) BPT (3) DMSO     0 : 83 : 13 : 4 32
  8 DIPEA (1.5) CySH (0.2) BPT (3) THF   71 : 3 : 0 : 26 n.d.c

  9 Py·BH3 (1.2) – BPT (3) MeCN   78 : 2 : 4 : 16 n.d.c

10 AscHd/NEt3 (1.5) CySH (0.2) BPT (3) DMSO     0 : 75 : 0 : 25 14
11 g-terpinene (1.5) – BPT (3) DMA     0 : 90 : 0 : 10 72
12 ggg-terpinene (1.5) CsF (1.0) BPT (3) DMA     0 : 98 : 0 : 2 80
13 g-terpinene (1.5) CsF (1.0) – DMA   55 : 0 : 45 : 0 23
14e g-terpinene (1.5) CsF (1.0) BPT (3) DMA 100 : 0 : 0 : 0 – f

a Determined by GC-MS analysis. b Determined by 19F NMR with PhCF3 as an internal standard. c Not determined. d AscH is ascorbic acid. e No light. 
f No reaction.
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(3 mol%), MeC(O)NMe2, 400 nm (80 W), 2 h.



Mendeleev Commun., 2023, 33, 387–389

–  389  –

anion dissociates into a stable aryloxide anion and an alkyl 
radical. The radical is quenched by g-terpinene giving product 3 
and the corresponding dienyl radical. The latter quickly 
undergoes aromatization by oxidation with the photocatalyst.

In summary, a method of photocatalytic deoxygenation of 
a-fluoroalkyl-substituted alcohols using a readily available 
reducing agent is described. The intermediate tetrafluoropyridine 
ethers are prepared from the fluorinated alcohols and may be 
used without purification, or can be synthesized from the 
corresponding aldehydes in one step.
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