

**New perylene diimide electron acceptors for organic electronics:
synthesis, optoelectronic properties and performance in perovskite solar cells**

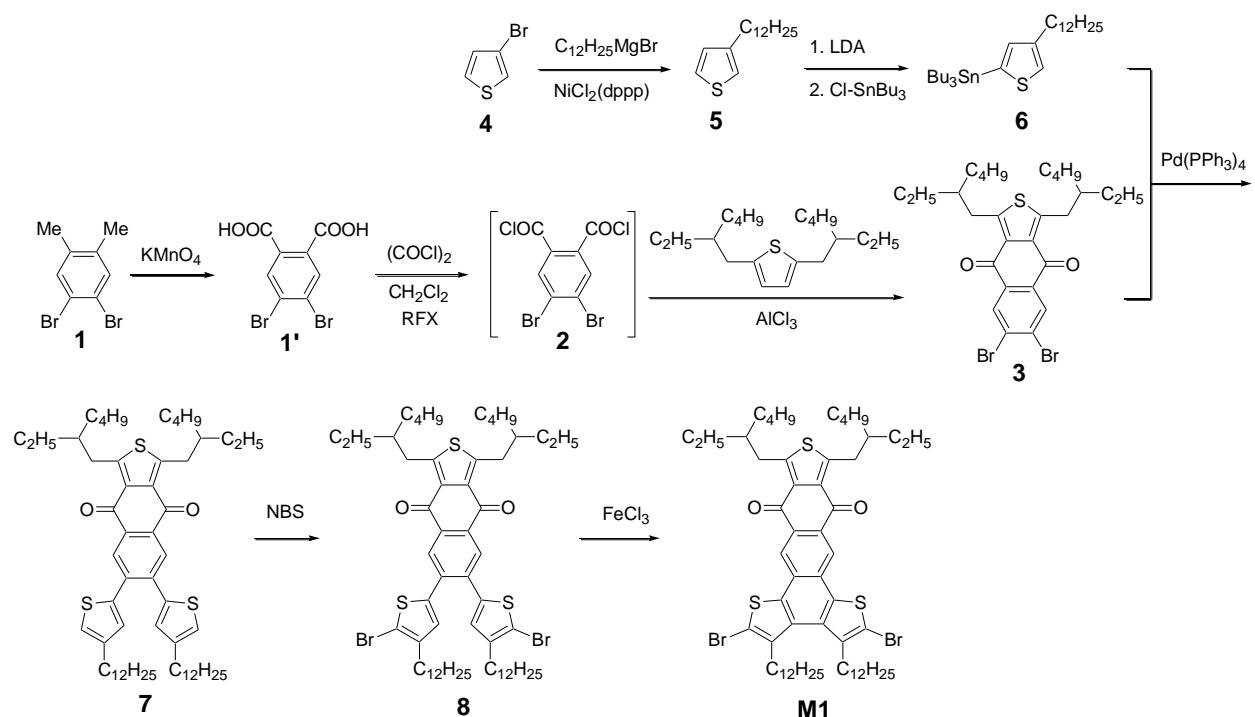
Sergei A. Kuklin, Sergey V. Safronov, Ekaterina A. Khakina,
Anastasiya G. Buyanovskaya, Lyubov A. Frolova and Pavel A. Troshin

Content

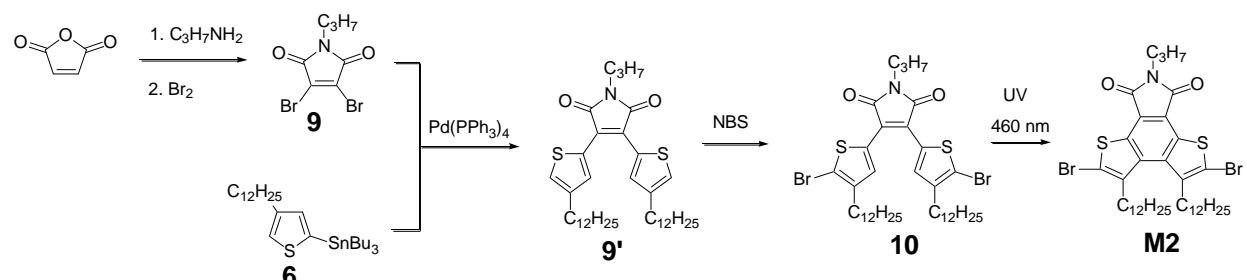
Experimental Part	S2
Instruments.....	S2
Synthesis of the compounds	S3
1,2-Dibromo-4,5-dimethylbenzene (1).	S4
4,5-Dibromophthalic acid (1').	S5
4,5-Dibromophthaloyl dichloride (2).....	S5
2,5-Bis(2-ethylhexyl)thiophene.	S5
6,7-Dibromo-1,3-bis(2-ethylhexyl)naphtho[2,3- <i>c</i>]thiophene-4,9-dione (3).....	S6
Tributyl(4-dodecylthiophen-2-yl)stannane (6).	S6
6,7-Bis(4-dodecylthiophen-2-yl)-1,3-bis(2-ethylhexyl)naphtho[2,3- <i>c</i>]thiophene-4,9-dione (7).	S7
6,7-Bis(5-bromo-4-dodecylthiophen-2-yl)-1,3-bis(2-ethylhexyl)naphtho[2,3- <i>c</i>]thiophene-4,9-dione (8).	S8
2,5-Dibromo-3,4-didodecyl-9,11-bis(2-ethylhexyl)anthra[1,2- <i>b</i> :4,3- <i>b</i> ':6,7- <i>c</i> ']trithiophene-8,12-dione (M1).	S9
3,4-Dibromo-1-propyl-1 <i>H</i> -pyrrole-2,5-dione (9).	S9
3,4-Bis(4-dodecylthiophen-2-yl)-1-propyl-1 <i>H</i> -pyrrole-2,5-dione (9').....	S10
3,4-Bis(5-bromo-4-dodecylthiophen-2-yl)-1-propyl-1 <i>H</i> -pyrrole-2,5-dione (10).	S10
2,5-Dibromo-3,4-didodecyl-8-propyl-7 <i>H</i> -dithieno[2,3- <i>e</i> :3',2'- <i>g</i>]isoindole-7,9(8 <i>H</i>)-dione (M2).	S11
3,4-Didodecyl-9,11-bis(2-ethylhexyl)-2,5-diethynylanthra[1,2- <i>b</i> :4,3- <i>b</i> ':6,7- <i>c</i> ']trithiophene-8,12-dione (11).	S12

3,4-Didodecyl-2,5-diethynyl-8-propyl-7 <i>H</i> -dithieno[2,3- <i>e</i> :3',2'- <i>g</i>]isoindole-7,9(8 <i>H</i>)-dione (12).	S13
5,5'-(3,4-Didodecyl-9,11-bis(2-ethylhexyl)-8,12-dioxo-8,12-dihydroanthra[1,2- <i>b</i> :4,3- <i>b</i> ':6,7- <i>c</i> "]-trithiophene-2,5-diyl)bis(ethyne-2,1-diyl)bis(<i>N,N</i> '-di(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide) (NFA-1).	S14
5,5'-(3,4-Didodecyl-7,9-dioxo-8-propyl-8,9-dihydro-7 <i>H</i> -dithieno[2,3- <i>e</i> :3',2'- <i>g</i>]isoindole-2,5-diyl)bis(ethyne-2,1-diyl)bis(<i>N,N</i> '-di(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide) (NFA-2).	S15
Mass-spectra characterization.....	S17
Optical and electronic properties of acceptor molecules NFA-1 , NFA-2	S20
Theoretical calculations	S21
NMR characterization.....	S36

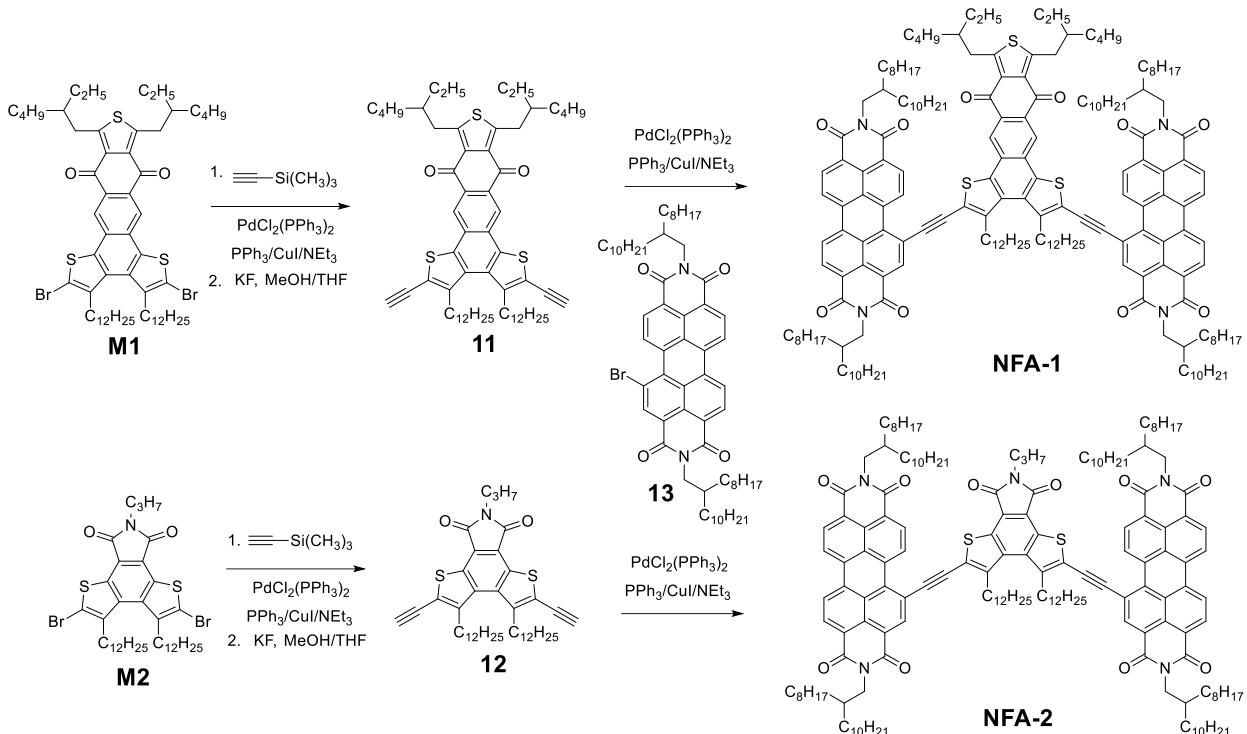
Experimental Part


Instruments

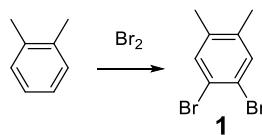
¹H NMR and ¹³C NMR spectra were obtained on a Bruker Avance III 400 (400 MHz) or an Agilent 600 MHz DD2 nuclear magnetic resonance (NMR) spectrometer. UV-vis absorption spectra were recorded on a Shimadzu UV-2600 spectrophotometer. Oxidation and reduction potentials of the compounds were determined by cyclic voltammetry (CV) experiments on a computer controlled potentiostat “Autolab type III” at a scan rate of 100 mVs⁻¹. A platinum working electrode, Ag/AgNO₃ (0.1 M in anhydrous acetonitrile), and a platinum wire were used as the working electrode, reference electrode and counter electrode, respectively, in a nitrogen-saturated tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) solution (0.1 M in anhydrous acetonitrile). Electrospray ionization high resolution mass spectrometry was carried out with Bruker microTOF II instrument operating in positive (capillary voltage of 4500 V) and negative (capillary voltage of 3200 V) ion modes. Quantum calculations were performed using Gaussian 16 program package and Multiwfn visualization software, on B3LYP/6-311++g(d,p) level of theory. MALDI-TOF mass-spectra were recorded using a Shimadzu Biotech Axima Confidence spectrometer in positive ions mode using trihydroxyacetophenone as a matrix.


Perovskite solar cells (PSC) were made in the following way. A hole-transport layer of poly(bis(4-phenyl)(4'-methylphenyl)amine) (PTA) was deposited on thoroughly cleaned glass substrates with an electrically conductive ITO layer using spin-coating, and then dried at 110°C.

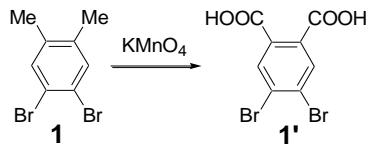
After drying, a light-absorbing MAPbI_3 perovskite layer was applied over the PTA by a two-step method with toluene as an anti-solvent to initiate crystallization of the perovskite layer. After treatment with toluene, the MAPbI_3 layer was dried at 55°C for 15 minutes, then slowly heated to 80°C, and kept at this temperature for 5 minutes. After cooling, a layer of **NFA-1** or **NFA-2** was applied at the surface of the perovskite layer by spin-coating, followed by a hole-blocking layer deposition by thermal evaporation in high vacuum (6×10^{-6} mbar). At the final stage, thermal deposition of electrode materials, Mg (5 nm) and Al (100 nm), was carried out.


Synthesis of the compounds

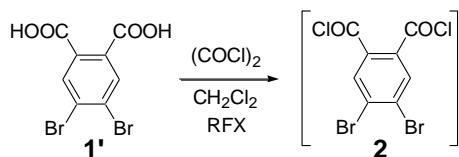
Scheme S1 Synthetic pathway to the compound **M1**.



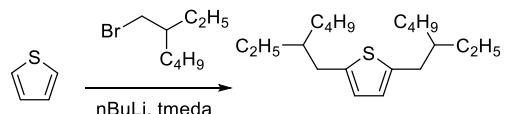
Scheme S2 Synthetic pathway to the compound **M2**.


Scheme S3 Synthetic pathway to the acceptor PDI derivatives **NFA-1** and **NFA-2**.

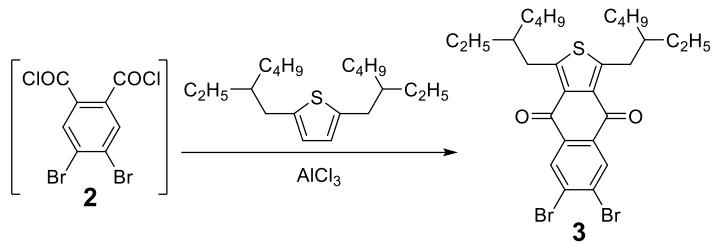
1,2-Dibromo-4,5-dimethylbenzene (1).


Bromine (40.5 ml, 121.9 g, 0.763 mol) was added dropwise to a mixture of *o*-xylene (46 ml, 40.48 g, 0.381 mol) and iodine (0.503 g, 2 mmol) for 4 h at 0°C and with good stirring. Then the mixture was left overnight at room temperature. Then the mixture was dissolved in CH_2Cl_2 (150 ml) and washed with 2 M NaOH solution (2×100 ml). The organic phase was separated, the water phase was extracted with CH_2Cl_2 (2×100 ml). The combined organics were washed with water (300 ml), dried with MgSO_4 , then the solvent was evaporated. The oily residue was dissolved in boiling MeOH (250–300 ml) and cooled to -15°C . White product was filtrated, washed with cold MeOH and dried. The title compound was obtained as white solid with the yield of 81 g (80.5%). ^1H NMR (400 MHz, CDCl_3) δ 7.37 (s, 2H), 2.18 (s, 6H). ^{13}C NMR (101 MHz, CDCl_3) δ 137.78, 134.33, 131.07, 121.23, 19.23.

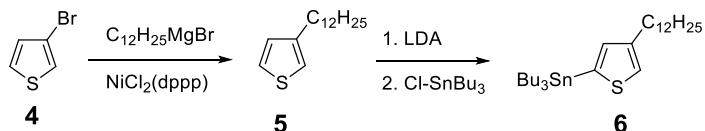
4,5-Dibromophthalic acid (1').


A suspension of 1,2-dibromo-4,5-dimethylbenzene **1** (13 g, 49.25 mmol) and KMnO₄ (31.12 g, 197 mmol) in water (300 ml) was refluxed for 6 h. After cooling the excess of permanganate was inactivated by addition of ethanol (25 ml) and then solid KOH (15 g) was added. The warm suspension was filtered and excess of hydrochloric acid (12M) was slowly added, and the mixture was cooled to 0°C. The precipitate was filtered and dried. The title compound (12.8 g, 80%) was obtained as a white powder. ¹H NMR (400 MHz, DMSO-d₆) δ 8.16 (s, 2H), 3.45 (br.s, 3H, COOH + traces of H₂O in DMSO-d₆). ¹³C NMR (101 MHz, DMSO-d₆) δ 166.72, 135.13, 134.47, 127.05.

4,5-Dibromophthaloyl dichloride (2).


To a suspension of 4,5-dibromophthalic acid **1'** (3 g, 9.26 mmol) in dry CH₂Cl₂ (120 ml), oxalyl chloride (4 ml, 5.88 g, 46.31 mmol) and dry DMF (0.04 ml) were added at 0°C with stirring. The mixture was warmed to 25°C during 30 min and then refluxed for 24 h. After cooling the solvents were removed in vacuum and the residue was used in the next stage without further purification.

2,5-Bis(2-ethylhexyl)thiophene.

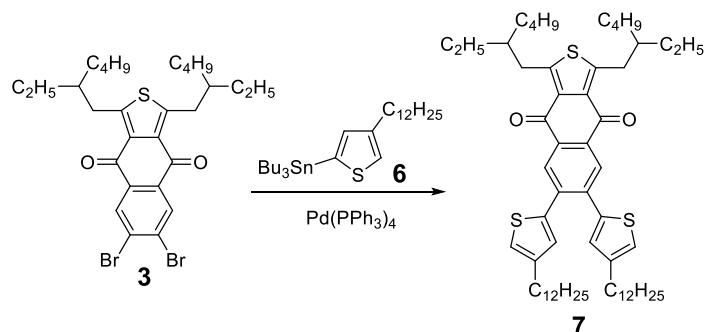

This compound was prepared according to the literature method [*Synthesis*, 2018, 51, 859] from thiophene (13.50 g, 160.45 mmol), BuⁿLi (1.6 M, 250 ml, 401 mmol), TMEDA (37.29 g, 321 mmol) and 2-ethylhexyl bromide (77.47 g, 401 mmol) in dry THF (1000 ml) with the yield of 25 g (50%). ¹H NMR (400 MHz, CDCl₃) δ 6.55 (s, 1H), 2.70 (d, *J* = 6.7 Hz, 2H), 1.55 (m, 1H), 1.46 – 1.22 (m, 8H), 0.89 (t, *J* = 7.3 Hz, 6H).

6,7-Dibromo-1,3-bis(2-ethylhexyl)naphtho[2,3-*c*]thiophene-4,9-dione (3).

The 4,5-dibromophthaloyl dichloride **2** (from the previous stage) was dissolved in dry CH₂Cl₂ (150 ml), and 2,5-bis(2-ethylhexyl)thiophene (2.86 g, 9.26 mmol) was added to the solution. The mixture was cooled to 0°C, and AlCl₃ (6.17 g, 46.28 mmol) was added by small portions with good stirring. After the addition was completed, the mixture was stirred at 0°C for additional 30 min and then 24 h at 25°C. Then this was poured onto ice (100 g), the organic phase was separated and the water layer was extracted with CH₂Cl₂ (1×120 ml). The combined organic phase was dried with MgSO₄, filtrated and evaporated to dryness. The residue was purified on SiO₂ column using gradient mixture of hexane/CH₂Cl₂ (100:0 to 85:15) as an eluent. After evaporating and drying the title compound was obtained as yellowish oil (2.2 g, 40%). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 2H), 3.29 (ddd, *J* = 12.1, 8.3, 2.3 Hz, 4H), 1.87 – 1.69 (m, 2H), 1.54–1.17 (m, 16H), 1.09–0.73 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 178.92, 155.77, 134.70, 132.65, 131.42, 131.17, 41.09, 34.06, 32.75, 28.77, 26.01, 23.15, 14.22, 10.82.

Tributyl(4-dodecylthiophen-2-yl)stannane (6).

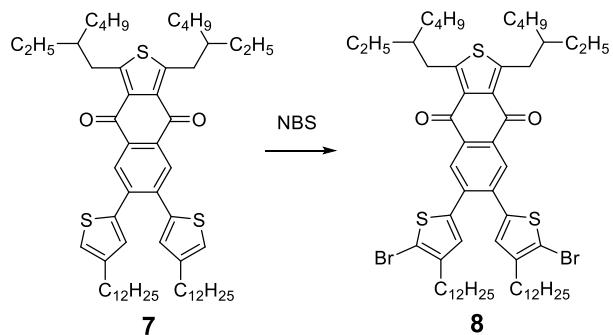
1-st stage: 3-Dodecylthiophene (5). To a suspension of Mg (12.62 g, 0.519 mmol) in dry THF (100 ml), a small portion of C₁₂H₂₅Br (3 ml) was added to initiate the reaction. After several minutes the dropwise addition of a solution of C₁₂H₂₅Br (86.3 g, 346.26 mmol) in dry THF (600 ml) was started. After completion of the addition, the reaction mixture was refluxed for 4 h, then cooled and left at room temperature overnight. Then the Grignard solution was transferred to a dropping funnel *via* teflon tubing and added slowly for 2 h to a cooled (0°C) solution of 3-bromothiophene (**4**, 56.46 g, 346.3 mmol) and NiCl₂(dppp) (1.88 g, 3.36 mmol) in dry THF (500 ml) with good stirring. After completion of the addition, the mixture was refluxed overnight. After cooling, water (200 ml) was added, the organic phase was separated and evaporated. The residue was dissolved in petroleum ether (300 ml), washed with 1 M HCl (1×300 ml), dried with MgSO₄, filtrated and evaporated. The residue was distilled in vacuum, the title compound was collected at 185–192°C (1 Torr). The yield is 75 g (86%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 –


7.21 (m, 1H), 6.97 (m, 2H), 2.67 (t, $J = 7.7$ Hz, 2H), 1.74 – 1.57 (m, 2H), 1.33 (m, 18H), 0.93 (t, $J = 6.6$ Hz, 3H).

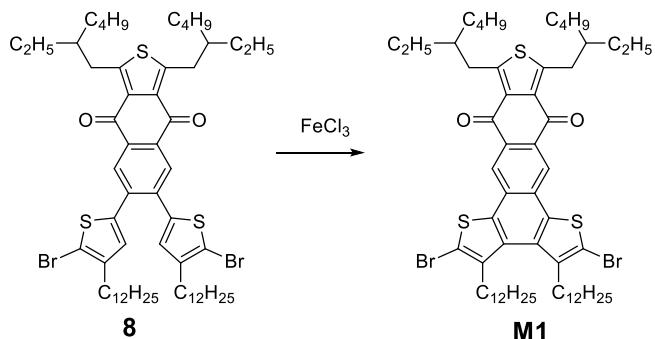
2-nd stage: Tributyl(4-dodecylthiophen-2-yl)stannane (6).

To a 3-necked flask (500 ml) charged with dry THF (200 ml) and Pr^i_2NH (23 ml, 16.67 g, 165 mmol), a Bu^nLi solution (97 ml, 154.5 mmol, 1.6 M in hexanes) was added dropwise at -80°C with stirring. After completion of the addition, the cooling bath was removed and the reaction was warmed to -10°C during 30 min. Then it was cooled to -80°C again.

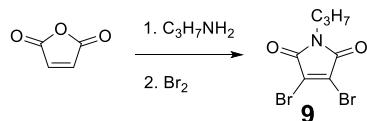
Another 3-necked flask (1000 ml) was charged with dry THF (600 ml) and 3-dodecylthiophene (**5**, 26 g, 103 mmol) and cooled to -80°C . Then to this mixture the previously prepared cold solution of LDA was quickly added from the first flask *via* teflon tubing with septa with good stirring. After the addition of LDA was completed, the resulting mixture was warmed to 0°C during 1 h, then cooled to -80°C again, and a solution of ClSnBu_3 (53.64 g, 164.8 mmol) in dry THF (50 ml) was added dropwise. The cooling was removed, and the mixture was stirred at room temperature overnight. Then water (350 ml) was added, the organic phase was separated and evaporated. The residue was dissolved in petroleum ether (300 ml), washed with water (1×300 ml), dried with MgSO_4 , filtrated and evaporated. The residue was distilled in vacuum, the title compound was collected at 260–290°C (1 Torr). The yield is 49 g (90.5%). ^1H NMR (500 MHz, CDCl_3) δ 7.26 – 7.18 (m, 1H), 7.08 – 6.93 (m, 1H), 2.74 – 2.62 (m, 2H), 1.78 – 1.49 (m, 8H), 1.47 – 1.22 (m, 28H), 1.22 – 1.01 (m, 6H), 1.01 – 0.85 (m, 12H). ^{13}C NMR (126 MHz, CDCl_3) δ 144.47, 136.98, 136.89, 136.79, 136.27, 125.55, 125.50, 125.46, 31.96, 30.75, 30.01, 29.73, 29.72, 29.69, 29.66, 29.54, 29.51, 29.40, 29.13, 29.07, 29.03, 28.99, 28.90, 27.88, 27.52, 27.36, 27.28, 27.06, 27.05, 26.88, 22.73, 17.53, 14.15, 13.69, 13.63, 12.18, 12.12, 10.89, 10.85, 10.76, 9.41, 9.35.


6,7-Bis(4-dodecylthiophen-2-yl)-1,3-bis(2-ethylhexyl)naphtho[2,3-*c*]thiophene-4,9-dione (7).

A solution of compound **3** (2.2 g, 3.69 mmol) and compound **6** (5g, 9.22 mmol) in dry toluene (100 ml) was purged with argon for 45 min. Then $\text{Pd}(\text{PPh}_3)_4$ (213 mg, 0.1844 mmol) was added, and the purging with argon was continued for additional 20 min. The solution was refluxed for

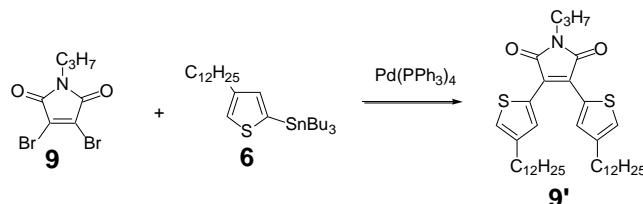

24 h. After cooling the solvent was removed in vacuum, and the residue was purified on SiO_2 column using gradient mixture of hexane/ CH_2Cl_2 (100:0 to 90:10) as an eluent. After evaporation of the eluate, the title compound was obtained as yellow oil (3.36 g, 97%). ^1H NMR (500 MHz, CDCl_3) δ 8.25 (s, 2H), 6.94 (d, J = 1.4 Hz, 2H), 6.90 (d, J = 1.4 Hz, 2H), 3.34 (ddd, J = 9.3, 7.2, 2.6 Hz, 4H), 2.55 (m, J = 7.6 Hz, 4H), 1.90 – 1.76 (m, 2H), 1.57 (m, 4H), 1.50 – 1.18 (m, 57H), 1.04 – 0.91 (m, 18H). ^{13}C NMR (126 MHz, CDCl_3) δ 180.47, 154.76, 143.62, 140.70, 139.02, 133.83, 131.84, 129.78, 129.72, 122.27, 41.11, 34.05, 32.74, 32.08, 30.67, 30.56, 29.87, 29.82, 29.78, 29.64, 29.53, 29.40, 28.79, 26.02, 23.18, 22.84, 14.27, 14.24, 10.84

6,7-Bis(5-bromo-4-dodecylthiophen-2-yl)-1,3-bis(2-ethylhexyl)naphtho[2,3-*c*]thiophene-4,9-dione (8).

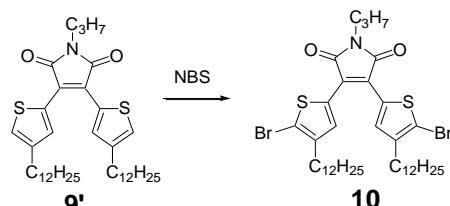

Compound **7** (3.36 g, 3.58 mmol) was dissolved in a mixture of CH_2Cl_2 (75 ml) and AcOH (25 ml), and the solution was cooled to 0°C. Then NBS (1.40 g, 7.88 mmol) was added by small portions for 20 min, the cooling bath was removed, and the mixture was stirred at 25°C for 24 h. Then the reaction mixture was poured onto ice, neutralized with NaHCO_3 and extracted with CH_2Cl_2 (2×100 ml). The combined organic phase was washed with water (1×250 ml), dried with MgSO_4 and evaporated. The residue was purified on SiO_2 column using gradient mixture of hexane/ CH_2Cl_2 (100:0 to 90:10) as an eluent. The title compound was obtained as yellow oil (solidified at RT within 10 – 15 h) with the yield of 2.8 g (71%). ^1H NMR (500 MHz, CDCl_3) δ 8.28 (s, 2H), 6.81 (s, 2H), 3.33 (ddd, J = 9.4, 7.2, 2.7 Hz, 4H), 2.60–2.50 (t, J = 6.9 Hz, 4H), 1.90–1.75 (m, 2H), 1.65–1.50 (m, 4H), 1.49–1.18 (m, 54H), 1.04–0.81 (m, 18H). ^{13}C NMR (126 MHz, CDCl_3) δ 180.12, 155.10, 142.63, 140.03, 137.86, 134.14, 131.70, 129.58, 111.62, 41.13, 34.07, 32.75, 32.09, 29.89, 29.87, 29.86, 29.82, 29.74, 29.60, 29.53, 29.31, 28.79, 26.02, 23.17, 22.85, 14.27, 14.24, 10.84.

2,5-Dibromo-3,4-didodecyl-9,11-bis(2-ethylhexyl)anthra[1,2-b:4,3-b':6,7-c'']trithiophene-8,12-dione (M1).

To a solution of compound **8** (500 mg, 0.4556 mmol) in a mixture of CH_2Cl_2 (60 ml) and MeNO_2 (15 ml), anhydrous FeCl_3 (370 mg, 2.28 mmol) was added in one portion, then the mixture was refluxed for 5 h. After that another portion of FeCl_3 (370 mg, 2.28 mmol) was added, and refluxing was continued for additional 5 h. After cooling water (50 ml) was added, the organic phase was separated, and water phase was extracted with CH_2Cl_2 (2×70 ml). The combined organic layers were washed with H_2O (1×250 ml), dried with MgSO_4 and evaporated. The residue was purified on SiO_2 column using gradient mixture of hexane/ CH_2Cl_2 (100:0 to 90:10) as an eluent. After evaporation the title compound **M1** was obtained as yellow oil (solidified on standing) with the yield of 300 mg (60%). ^1H NMR (500 MHz, CDCl_3) δ 8.79 (s, 2H), 3.35 (m, 4H), 3.15 (t, $J = 7.9$ Hz, 4H), 1.84 (m, 2H), 1.63 – 1.52 (m, 4H), 1.50 – 1.12 (m, 30H), 1.00 – 0.84 (m, 18H). ^{13}C NMR (126 MHz, CDCl_3) δ 180.04, 154.90, 139.28, 138.69, 133.17, 132.33, 132.09, 128.08, 124.10, 116.09, 41.05, 34.20, 32.75, 32.06, 31.28, 29.80, 29.78, 29.72, 29.63, 29.50, 29.44, 29.23, 28.78, 26.03, 23.22, 22.83, 14.26, 10.85. HRMS: $\text{C}_{60}\text{H}_{86}\text{Br}_2\text{O}_2\text{S}_3$, m/z : 1095.4224 (M^+). Calcd. 1095.4216. Anal. Calcd for $\text{C}_{60}\text{H}_{86}\text{Br}_2\text{O}_2\text{S}_3$: C, 65.79%; H, 7.91%; S, 8.78%. Found: C, 66.01%; H, 7.74%; S, 8.46%.

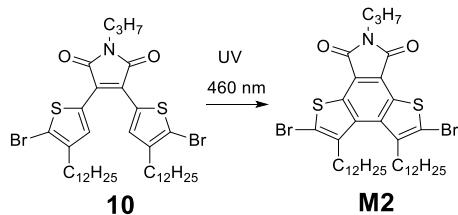

3,4-Dibromo-1-propyl-1*H*-pyrrole-2,5-dione (9).

To a cooled (0...+5°C) solution of propylamine (50 ml, 0.589 mol) in abs. THF (150 ml), was added dropwise a solution of maleic anhydride (55 g, 0.561 mol) in abs. THF (300 ml). After the addition was completed, the cooling bath was removed and the mixture was stirred at RT for 1 h. Solid potassium acetate (55 g, 0.561 mol) was added with good stirring and then propionic anhydride (130 ml) was added dropwise, and the yellow solution was stirred at RT overnight. The mixture was evaporated to dryness in vacuum at heating (60-80°C), then CHCl_3 (400 ml) and H_2O (400 ml) were added to the residue, and solid NaHCO_3 was added by small portions

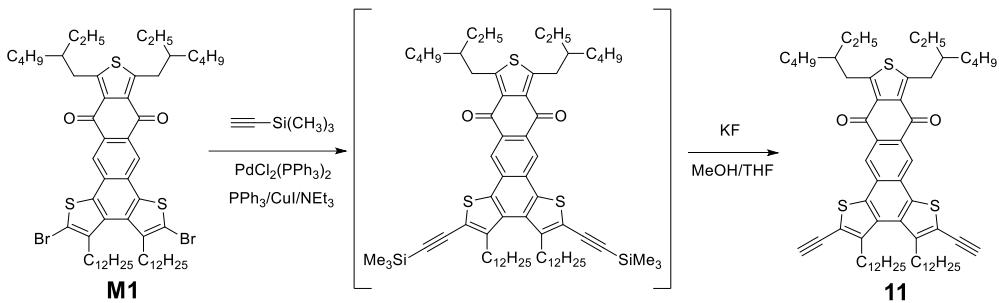

until the neutralization was completed. The organic phase was separated, washed with water, dried with MgSO_4 and evaporated. The dark brown residue (60 g) was dissolved in AcOH (250 ml) and to this solution potassium acetate (112 g, 1.143 mol) was added. Then bromine (45 ml, 0.873 mol) was added dropwise with good stirring at room temperature (cooling bath is necessary). After completion of the addition the reaction mixture was heated at 80°C overnight. After cooling the mixture was poured into 1 L of water/ice mixture and stirred. The product was filtered, washed with water and dried. The yield is 66 g (40%) of light yellow solid. ^1H NMR (500 MHz, CDCl_3) δ 3.57 (t, 2H, J = 7.96 Hz), 1.63 (m, 2H), 0.91 (t, J = 7.4 Hz, 2H). ^{13}C NMR (126 MHz, C_6D_6) δ 164.13, 129.44, 41.50, 21.92, 11.27.

3,4-Bis(4-dodecylthiophen-2-yl)-1-propyl-1*H*-pyrrole-2,5-dione (**9'**)

3,4-Dibromo-1-propyl-1*H*-pyrrole-2,5-dione (**9**) (6.65 g, 22.39 mmol) and tributyl(4-dodecylthiophen-2-yl)stannane (**6**, 29.2 g, 53.75 mmol) were dissolved in dry toluene (300 ml) and the solution was purged with Ar. Then $\text{Pd}(\text{PPh}_3)_4$ (259 mg, 0.224 mmol) was added, and the mixture was refluxed overnight. After cooling, reaction mixture was evaporated to dryness, the residue was purified by column chromatography on SiO_2 using hexane/ CH_2Cl_2 = 100:30 mixture as eluent. After evaporation of the eluate the residue was dissolved in hexane and cooled. After filtration the title product was obtained with 10.7 g (75%) yield. ^1H NMR (600 MHz, CDCl_3) δ 7.69 (d, J = 1.2 Hz, 2H), 7.15 (d, J = 0.8 Hz, 2H), 3.61 – 3.56 (t, J = 7.4 Hz, 2H), 2.62 – 2.57 (t, J = 7.66 Hz, 4H), 1.72 – 1.64 (m, 2H), 1.60 (m, 5H), 1.37 – 1.20 (m, 39H), 0.94 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.0 Hz, 6H). ^{13}C NMR (151 MHz, CDCl_3) δ 170.61, 143.99, 132.57, 129.69, 127.21, 126.08, 40.27, 32.07, 30.69, 30.37, 29.84, 29.80, 29.76, 29.61, 29.51, 29.40, 22.84, 21.99, 14.27, 11.48.

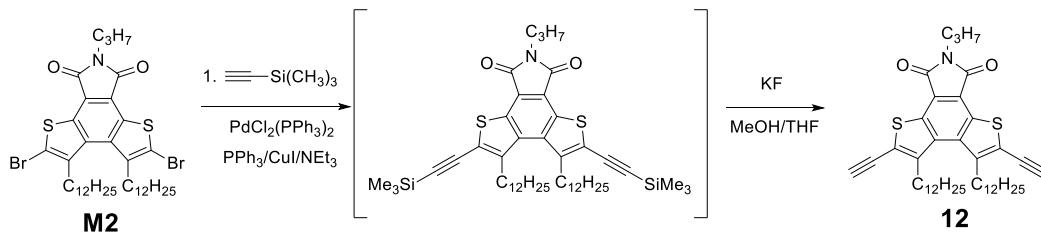

3,4-Bis(5-bromo-4-dodecylthiophen-2-yl)-1-propyl-1*H*-pyrrole-2,5-dione (**10**).

To a cooled solution of 3,4-bis(4-dodecylthiophen-2-yl)-1-propyl-1*H*-pyrrole-2,5-dione (**9'**) (4.278 g, 6.68 mmol) in dry DCM (70 ml) and AcOH (35 ml), NBS (2.62 g, 14.70 mmol) was


added by small portions at 0°C. Then the cooling bath was removed, and the mixture was stirred at RT overnight. Then the mixture was washed with water three times, neutralized with NaHCO₃, dried with MgSO₄ and evaporated. The residue was purified by column chromatography on SiO₂, with hexane/DCM = 4:1 mixture as an eluent. The title compound was obtained as red solid with 5.0 g (94%) yield. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 2H), 3.56 (t, *J* = 7.2 Hz, 2H), 2.56 (t, *J* = 7.6 Hz, 4H), 1.76 – 1.49 (m, 6H), 1.45 – 1.16 (m, 38H), 0.94 (t, *J* = 7.4 Hz, 3H), 0.88 (t, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.17, 143.01, 132.26, 129.58, 125.97, 116.73, 40.38, 32.07, 29.89, 29.82, 29.80, 29.72, 29.57, 29.51, 29.33, 22.84, 21.94, 14.27, 11.46.

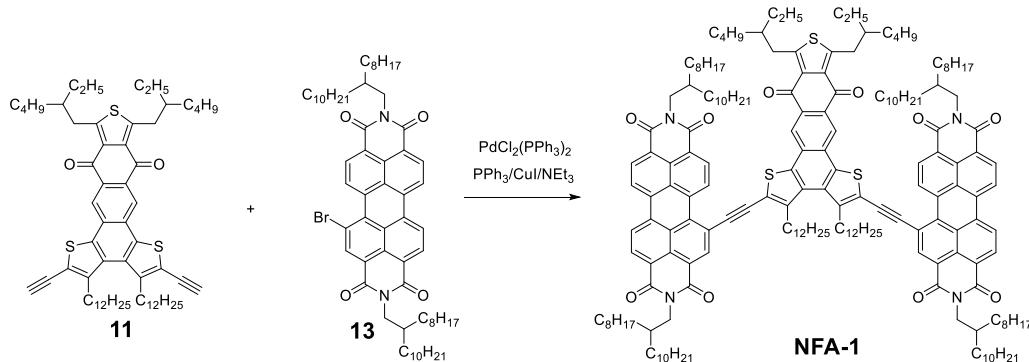
2,5-Dibromo-3,4-didodecyl-8-propyl-7*H*-dithieno[2,3-*e*:3',2'-*g*]isoindole-7,9(8*H*)-dione (M2).

A solution of bis(5-bromo-4-dodecylthiophen-2-yl)-1-propyl-1*H*-pyrrole-2,5-dione (**10**, 500 mg, 0.6267 mmol) and molecular iodine (80 mg, 0.315 mmol) in dry toluene (100 ml) was irradiated with UV light (465 nm) for 6 h with continuous purging with air through the solution. The reaction was controlled by TLC. After the completion of the process, the solvent was removed in vacuum, the residue was purified by column chromatography on SiO₂ with hexane/DCM = 4:1 mixture as an eluent. The title compound was obtained after evaporation of light-yellow band with the yield of 298 mg (60%). ¹H NMR (600 MHz, CDCl₃) δ 3.68 (t, *J* = 7.2 Hz, 2H), 3.21 (t, *J* = 7.54 Hz, 4H), 1.79 – 1.71 (m, 2H), 1.56 – 1.45 (m, 4H), 1.26 (m, 38H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.88 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 168.20, 137.64, 137.32, 132.60, 122.06, 121.68, 40.05, 32.06, 31.04, 29.77, 29.69, 29.59, 29.47, 29.42, 29.08, 22.83, 22.18, 14.26, 11.49. Anal. Calcd for C₃₉H₅₇Br₂NO₂S₂: C, 58.86%; H, 7.22%; N, 1.76%; S, 8.06%. Found: C, 59.34%; H, 7.34%; N, 1.76%; S, 7.85%. HRMS: C₃₉H₅₂Br₂NO₂S₂Na, *m/z*: 818.2044 (M+Na)⁺. Calcd. 818.2072.

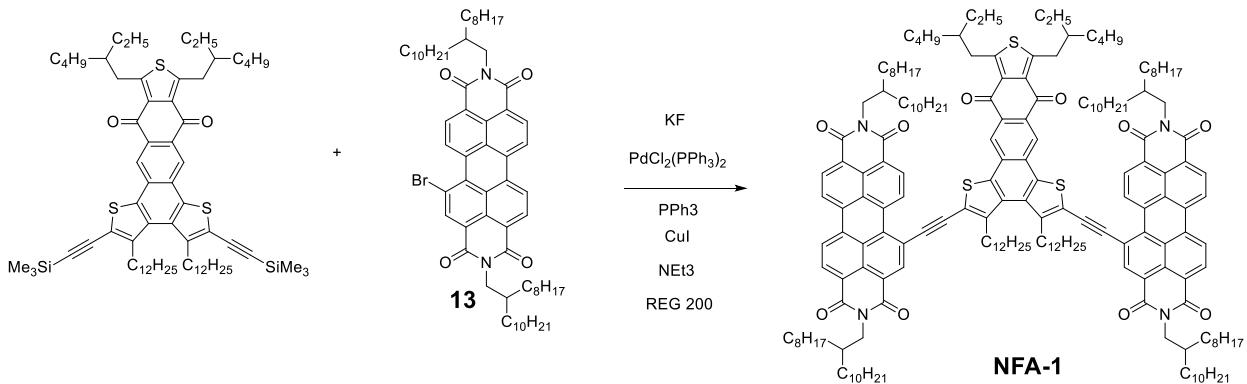

3,4-Didodecyl-9,11-bis(2-ethylhexyl)-2,5-diethynylanthra[1,2-*b*:4,3-*b*':6,7-*c*']trithiophene-8,12-dione (11**).**

A solution of 2,5-dibromo-3,4-didodecyl-9,11-bis(2-ethylhexyl)anthra[1,2-*b*:4,3-*b*':6,7-*c*']trithiophene-8,12-dione (**M1**) (2.27 g, 2.07 mmol) and trimethylsilylacetylene (1.48 ml, 10.36 mmol) in abs. THF (30 ml) and abs. NEt₃ (30 ml) was purged with argon for 20 min, then CuI (197 mg, 0.623 mmol), PPh₃ (163 mg, 0.623 mmol) and PdCl₂(PPh₃)₂ (145 mg, 0.207 mmol) were added in sequence, and the mixture was refluxed for 20 h. After cooling, the solvents were evaporated, the residue was dissolved in hexane and passed through SiO₂ pad (5 cm), the SiO₂ was washed with hexane and then with hexane/CH₂Cl₂ = 5:1 for several times. The eluate was evaporated and the title product was obtained with 2.33 g (99%) yield, and was used in the next stage without further purification. ¹H NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 3.47 – 3.20 (m, 4H), 1.86 (m, 1H), 1.70 – 1.56 (m, 2H), 1.52 – 1.20 (m, 30H), 0.98 (t, *J* = 7.4 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 180.07, 154.71, 145.80, 138.49, 133.72, 132.45, 132.01, 129.25, 124.34, 121.63, 105.17, 98.05, 40.94, 34.04, 32.64, 31.93, 31.16, 29.90, 29.68, 29.66, 29.61, 29.60, 29.36, 29.29, 29.18, 28.66, 25.92, 23.08, 22.69, 14.12, 10.73, -0.09, -0.50.

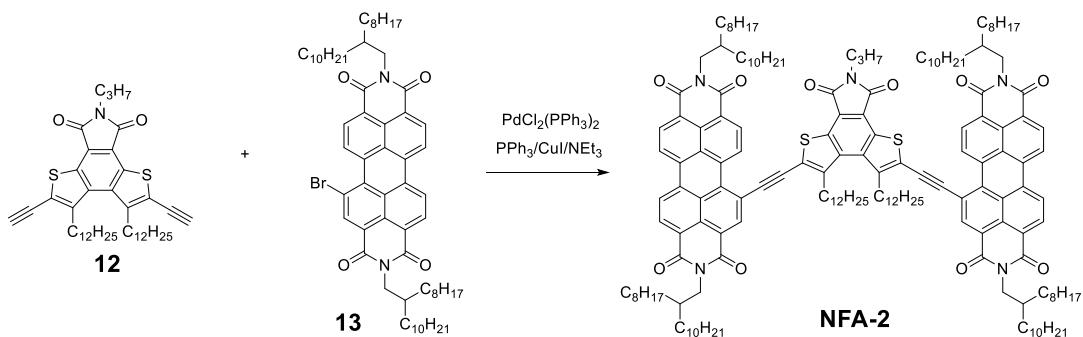
To a solution of bis-TMS intermediate (2.39 g, 2.11 mmol) in 100 ml of dry THF, was added a solution of KF (1.23 g, 21.12 mmol) in 15 ml of MeOH, and this was stirred for 3 h at RT. After the reaction was completed, the solution was evaporated to dryness, the residue was dissolved in CH₂Cl₂ (150 ml), washed with water (150 ml), dried with MgSO₄ and evaporated. The solid residue was suspended in cold hexane, filtrated and dried. The yield of title compound is of 1.78 g (85.5%). ¹H NMR (500 MHz, CDCl₃) δ 8.90 (s, 1H), 3.73 (s, 1H), 3.47 – 3.23 (m, 4H), 1.91 – 1.79 (m, 1H), 1.65 – 1.53 (m, 2H), 1.50 – 1.09 (m, 28H), 0.95 (t, *J* = 7.4 Hz, 3H), 0.90 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 180.11, 154.97, 146.30, 138.88, 133.65, 132.68, 132.10, 129.32, 124.46, 120.53, 86.97, 77.52, 77.41, 77.16, 76.91, 41.06, 34.20, 32.75, 32.06, 31.33, 30.00, 29.80, 29.78, 29.72, 29.63, 29.49, 29.41, 29.25, 28.78, 26.04, 23.21, 22.83, 14.26, 10.85. Anal. Calcd for C₆₄H₈₈O₂S₃: C, 77.99; H, 9.00; S, 9.76. Found: C, 77.92; H, 8.98; S, 9.75 %. HRMS: C₆₄H₈₈O₂S₃, *m/z*: 985.6005 (M⁺). Calcd. 985.6019.


3,4-Didodecyl-2,5-diethynyl-8-propyl-7*H*-dithieno[2,3-*e*:3',2'-*g*]isoindole-7,9(8*H*)-dione (12).

A solution of 2,5-dibromo-3,4-didodecyl-8-propyl-7*H*-dithieno[2,3-*e*:3',2'-*g*]isoindole-7,9(8*H*)-dione (**M2**) (2.84 g, 3.57 mmol) and trimethylsilylacetylene (2.55 ml, 17.84 mmol) in abs. THF (40 ml) and abs. NEt₃ (40 ml) was purged with argon for 20 min, then CuI (227 mg, 0.714 mmol), PPh₃ (187 mg, 0.714 mmol) and PdCl₂(PPh₃)₂ (250 mg, 0.357 mmol) were added in sequence, and the mixture was refluxed for 20 h. After cooling, the solvents were evaporated, the residue was dissolved in hexane and passed through SiO₂ pad (5 cm), the SiO₂ was washed with hexane and then with hexane/CH₂Cl₂ = 5:1 for several times. The eluate was evaporated, and the title product was obtained with 2.89 g (99%) yield, and was used in the next stage without further purification. ¹H NMR (500 MHz, CDCl₃) δ 3.72 – 3.69 (t, *J* = 7.7 Hz, 2H), 3.36 – 3.32 (t, *J* = 7.7 Hz, 4H), 1.82 – 1.72 (m, 2H), 1.59 (m, 4H), 1.38 – 1.18 (m, 37H), 1.00 (t, *J* = 7.4 Hz, 3H), 0.89 (t, *J* = 7.0 Hz, 6H), 0.37 – 0.33 (m, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 168.19, 144.06, 138.34, 132.02, 126.48, 122.95, 107.29, 97.94, 39.85, 31.92, 30.87, 29.92, 29.66, 29.65, 29.59, 29.35, 29.28, 29.04, 22.69, 22.08, 14.12, 11.37, -0.20.

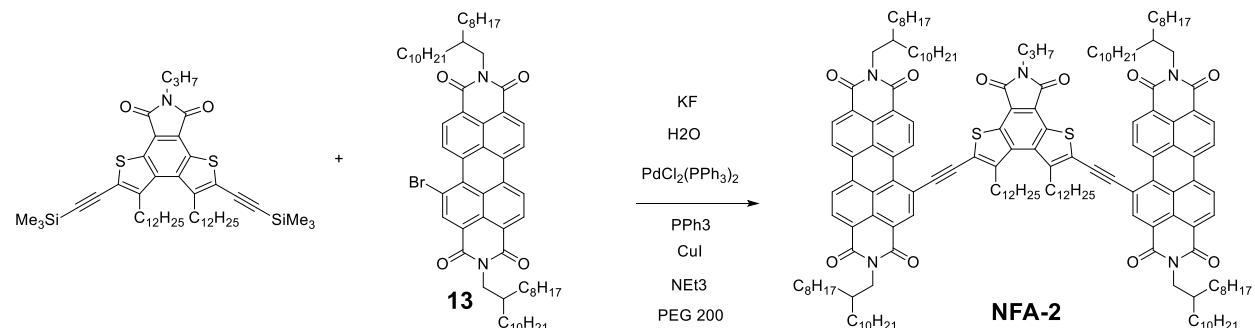

To a solution of bis-TMS intermediate (3.00 g, 3.61 mmol) in dry THF (220 ml), was added a solution of KF (2.1 g, 36.13 mmol) in MeOH (20 ml), and the solution was stirred for 3 h ad RT. After the reaction was completed, the solution was evaporated to dryness, the residue was dissolved in CH₂Cl₂ (150 ml), washed with water (150 ml), dried with MgSO₄ and evaporated. The solid residue was suspended in cold hexane, filtrated and dried. The yield of title compound is of 2.00 g (80.6%). ¹H NMR (500 MHz, CDCl₃) δ 3.81 (s, 2H), 3.69 (t, *J* = 7.39 Hz, 2H), 3.34 (t, *J* = 7.46 Hz, 4H), 1.79 – 1.69 (m, 2H), 1.52 (m, 4H), 1.32 – 1.16 (m, 38H), 0.97 (t, *J* = 7.4 Hz, 3H), 0.86 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 168.25, 144.68, 138.38, 132.26, 125.46, 123.29, 88.73, 77.44, 40.03, 32.05, 31.04, 30.00, 29.77, 29.76, 29.70, 29.60, 29.48, 29.41, 29.11, 22.83, 22.19, 14.26, 11.50. Anal. Calcd for C₄₃H₅₉NO₂S₂: C, 75.28; H, 8.67; N, 2.04; S, 9.35. Found: C, 75.30; H, 8.66; N, 2.16; S, 9.24. HRMS: C₄₃H₅₉NO₂S₂, *m/z*: 686.4060 (M⁺). Calcd. 686.4060.

5,5'-(3,4-Didodecyl-9,11-bis(2-ethylhexyl)-8,12-dioxo-8,12-dihydroanthra[1,2-*b*:4,3-*b*':6,7-*c*"]-trithiophene-2,5-diyl)bis(ethyne-2,1-diyl)bis(*N,N'*-di(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide) (NFA-1).


A solution of 3,4-didodecyl-9,11-bis(2-ethylhexyl)-2,5-diethynylantra[1,2-*b*:4,3-*b*':6,7-*c*"]-trithiophene-8,12-dione (**11**) (1 g, 1.01 mmol) and 1-bromo-*N,N'*-bis(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide (**13**) (2.61 g, 2.54 mmol) in a mixture of dry THF (100 ml) and NEt_3 (40 ml) was purged with argon for 20 min, then CuI (55 mg, 0.284 mmol), PPh_3 (75 mg, 0.284 mmol) and $\text{PdCl}_2(\text{PPh}_3)_2$ (100 mg, 0.142 mmol) were added in sequence, and the solution was refluxed for 20 h. After cooling the reaction mixture was evaporated, and the residue was purified by column chromatography on SiO_2 using $\text{CH}_2\text{Cl}_2/\text{EtOAc} = 100:5$ as an eluent. The yield is 1.85 g (63.1 %). ^1H NMR (500 MHz, CDCl_3) δ 10.10 (br.s, 1H), 8.18 – 9.08 (br.m, 7H), 4.18 (s, 2H), 4.08 (s, 2H), 3.47 (br.s, 4H), 0.47 – 2.22 (m, 121 H). ^{13}C NMR (151 MHz, CDCl_3) δ 163.61, 163.30, 162.96, 162.26, 154.74, 140.49, 137.76, 134.06, 133.59, 133.37, 131.53, 130.66, 128.80, 128.11, 126.79, 126.12, 123.88, 123.68, 123.44, 122.90, 122.79, 121.96, 120.87, 119.20, 101.66, 96.40, 44.93, 40.96, 36.84, 36.71, 34.26, 32.71, 32.06, 31.94, 31.88, 30.31, 30.28, 30.12, 30.05, 29.98, 29.87, 29.81, 29.78, 29.64, 29.52, 28.80, 26.76, 26.71, 26.07, 23.29, 22.81, 22.77, 14.32, 14.23, 14.14, 10.94. MALDI-TOF: $\text{C}_{192}\text{H}_{265}\text{N}_4\text{O}_{10}\text{S}_3$, m/z : 2885.57 [$\text{M}+\text{H}$]⁺. Calcd. 2884.96; $\text{C}_{192}\text{H}_{264}\text{NaN}_4\text{O}_{10}\text{S}_3$, m/z : 2907.66 [$\text{M}+\text{Na}$]⁺. Calcd. 2906.94. Anal. Calcd for $\text{C}_{192}\text{H}_{264}\text{N}_4\text{O}_{10}\text{S}_3$: C, 79.95; H, 9.23; N, 1.94; S, 3.33. Found: C, 79.85; H, 9.53; N, 1.91; S, 3.71.

Alternative one-pot method for preparation of **NFA-1**.

To a solution of bis-TMS intermediate (1.13 g, 1.00 mmol) in a solvent mixture of THF (30 ml) / NEt₃ (10 ml) 1-bromo-*N,N'*-bis(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide **13**, 2.62 g, 2.54 mmol) was added, then the solution was purged with argon for 20 min. Then CuI (11.4 mg, 0.06 mmol), PPh₃ (15.7 mg, 0.06 mmol), (PPh₃)₂PdCl₂ (21 mg, 0.03 mmol), 1.13 ml PEG 200MW and H₂O (0.51 ml) were added in sequence. The purging with argon was continued for additional 15 min, then KF (232 mg, 4 ммол) was added, and the mixture was refluxed for 20 h. The conversion was controlled by TLC (CHCl₃). After the reaction was completed, the mixture was evaporated and the residue was purified by column chromatography on SiO₂ using CH₂Cl₂/EtOAc = 100:5 as an eluent. The yield is 1.54 g (53.4 %). The spectroscopic data were identical with the sample prepared by conventional two-stage method (see above).


5,5'-(3,4-Didodecyl-7,9-dioxo-8-propyl-8,9-dihydro-7*H*-dithieno[2,3-*e*:3',2'-*g*]isoindole-2,5-diyl)bis(ethyne-2,1-diyl)bis(*N,N'*-di(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide) (NFA-2).

A solution of 3,4-didodecyl-2,5-diethynyl-8-propyl-7*H*-dithieno[2,3-*e*:3',2'-*g*]isoindole-7,9(8*H*)-dione (**12**, 0.68 g, 0.991 mmol) and 1-bromo-*N,N'*-bis(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide (**13**, 2.55 g, 2.48 mmol) in a mixture of dry THF (100 ml) and NEt₃ (40 ml) was purged with argon for 20 min, then CuI (55 mg, 0.284 mmol), PPh₃ (75 mg, 0.284 mmol) and PdCl₂(PPh₃)₂ (100 mg, 0.142 mmol) were added in sequence, and the solution was refluxed for 20 h. After cooling, the reaction mixture was evaporated, and the residue was purified by column chromatography on SiO₂ using CH₂Cl₂/EtOAc = 100:5 as an eluent. The yield is 1.94 g

(75.8 %). ^1H NMR (600 MHz, CDCl_3) δ 10.03 (d, $J = 7.6$ Hz, 1H), 8.68 (d, $J = 7.6$ Hz, 1H), 8.63 (s, 1H), 8.57 (d, $J = 7.7$ Hz, 1H), 8.49 (d, $J = 7.5$ Hz, 1H), 8.39 – 8.33 (m, 2H), 4.16 (d, $J = 5.5$ Hz, 2H), 4.07 (d, $J = 4.9$ Hz, 2H), 3.93 (s, 1H), 3.51 (s, 2H), 2.07 – 1.92 (m, 5H), 1.62 (s, 2H), 1.50 – 1.03 (m, 96H), 0.85 (m, 12H), 0.75 (t, $J = 7.2$ Hz, 3H). ^{13}C NMR (151 MHz, CDCl_3) δ 167.58, 163.55, 163.13, 162.85, 162.31, 145.50, 138.14, 137.63, 134.07, 133.55, 133.47, 133.35, 133.18, 131.18, 130.70, 128.84, 128.24, 126.95, 126.86, 126.15, 125.82, 123.89, 123.63, 123.52, 123.35, 122.90, 122.78, 122.18, 118.82, 103.33, 94.20, 44.90, 40.46, 36.82, 36.72, 32.07, 31.93, 31.54, 30.30, 30.28, 30.06, 29.99, 29.95, 29.88, 29.83, 29.78, 29.63, 29.53, 26.74, 26.71, 22.83, 22.82, 22.79, 22.24, 14.25, 14.24, 14.17, 11.70. MALDI-TOF: $\text{C}_{171}\text{H}_{236}\text{N}_5\text{O}_{10}\text{S}_3$, m/z : 2584.75 [M+H] $^+$. Calcd. 2584.76; $\text{C}_{171}\text{H}_{235}\text{NaN}_5\text{O}_{10}\text{S}_3$, m/z : 2607.77 [M+Na] $^+$. Calcd. 2607.74; $\text{C}_{171}\text{H}_{235}\text{KN}_5\text{O}_{10}\text{S}_3$, m/z : 2624.79 [M+K] $^+$. Calcd. 2622.72. Anal. Calcd for $\text{C}_{171}\text{H}_{235}\text{N}_5\text{O}_{10}\text{S}_2$: C, 79.46; H, 9.16; N, 2.71; S, 2.48. Found: C, 79.56; H, 9.29; N, 2.66; S, 2.68.

Alternative one-pot method for preparation of **NFA-2**.

To a solution of bis-TMS intermediate (0.81 g, 0.975 mmol) in a solvent mixture of THF (30 ml) / NEt_3 (10 ml) 1-bromo-*N,N'*-bis(2-octyldodecyl)perylene-3,4,9,10-tetracarboxybisimide (**13**, 2.55 g, 2.48 mmol) was added, then the solution was purged with argon for 20 min. Then CuI (11.2 mg, 0.058 mmol), PPh_3 (15.3 mg, 0.058 mmol), $(\text{PPh}_3)_2\text{PdCl}_2$ (20 mg, 0.029 mmol), 0.85 ml PEG 200MW and 0.4 ml H_2O were added in sequence. The purging with argon was continued for additional 15 min, then KF (226 mg, 3.9 mmol) was added and the reaction mixture was refluxed for 20 h. The conversion was controlled by TLC (CHCl_3). After the reaction was completed, the mixture was evaporated and the residue was purified by column chromatography on SiO_2 using $\text{CH}_2\text{Cl}_2/\text{EtOAc} = 100:5$ as an eluent. The yield is 1.48 g (58.7 %). The spectroscopic data were identical with the sample prepared by conventional two-stage method (see above).

Mass-spectra characterization

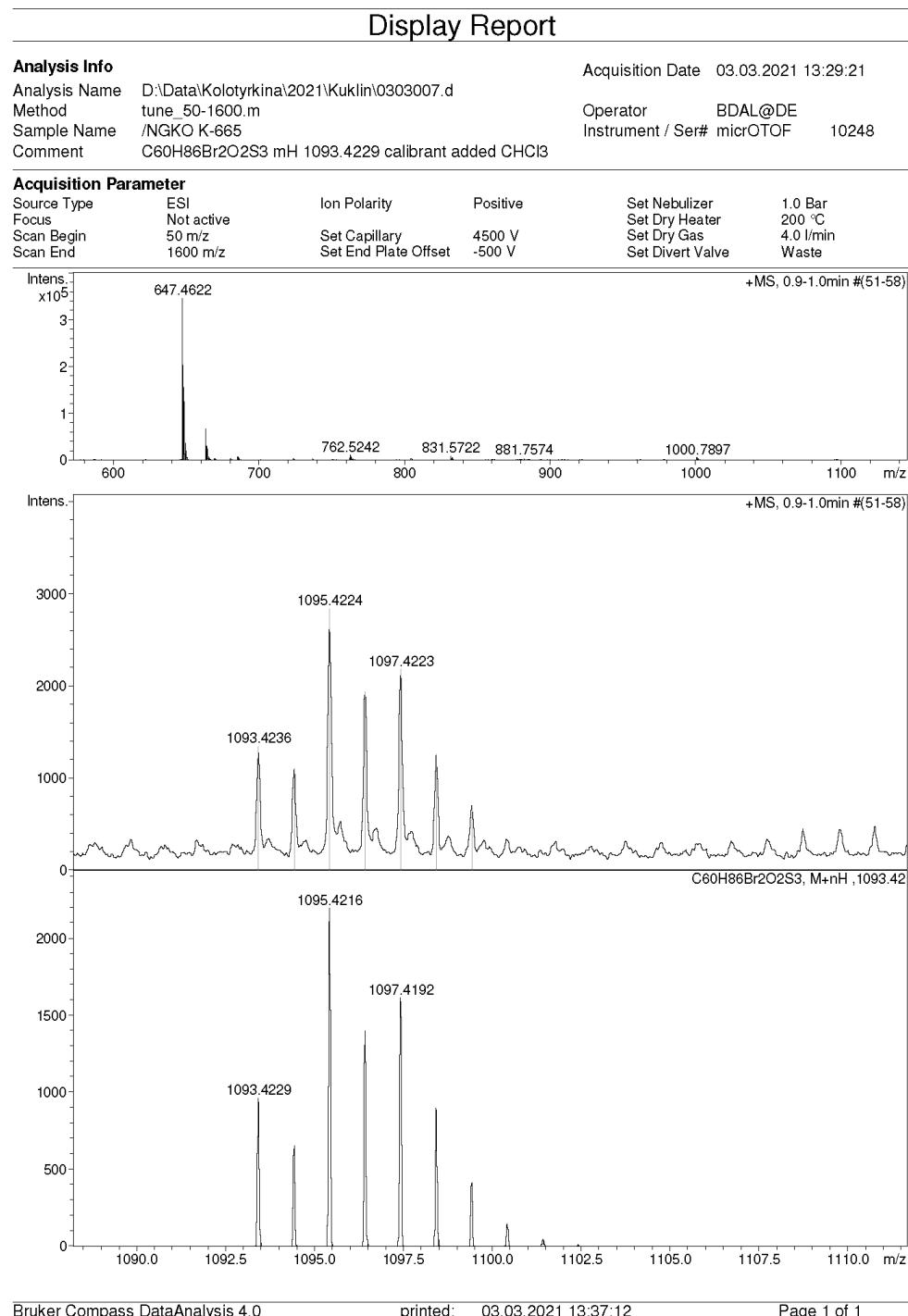


Figure S1 – Experimental and simulated high resolution mass spectrum of compound **M1**.

Display Report

Analysis Info

Analysis Name D:\Data\Kolotyrkina\2021\Kuklin\0603014.d
 Method tune_50-1600.m
 Sample Name /NGKO K644
 Comment C39H57Br2NO2S2 calibrant added CH3OH

Acquisition Date 03.06.2021 10:50:05
 Operator BDAL@DE
 Instrument / Ser# micrOTOF 10248

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	1.0 Bar
Focus	Not active			Set Dry Heater	200 °C
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	4.0 l/min
Scan End	1600 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste

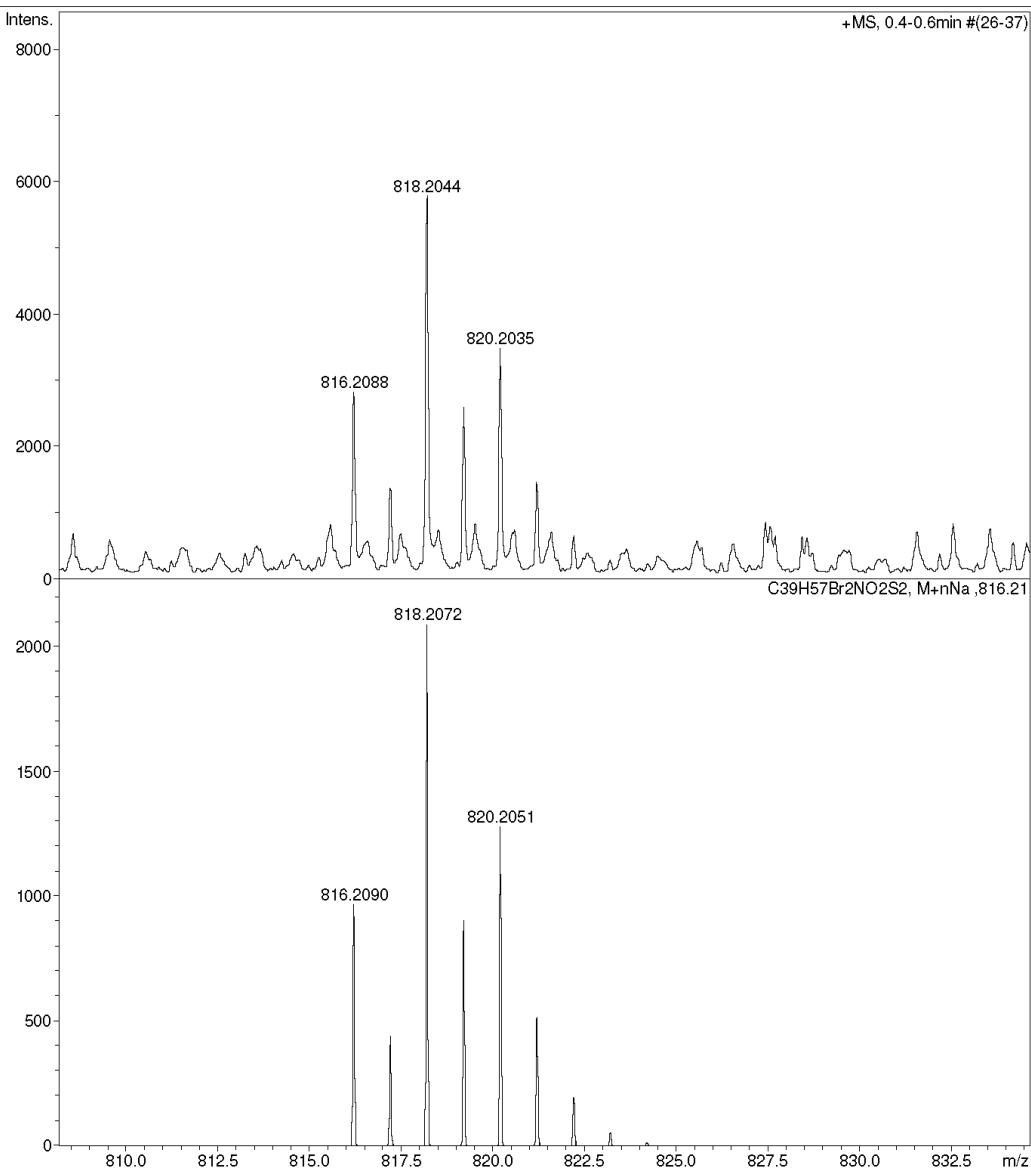


Figure S2 – Experimental and simulated high resolution mass spectrum of compound **M2**.

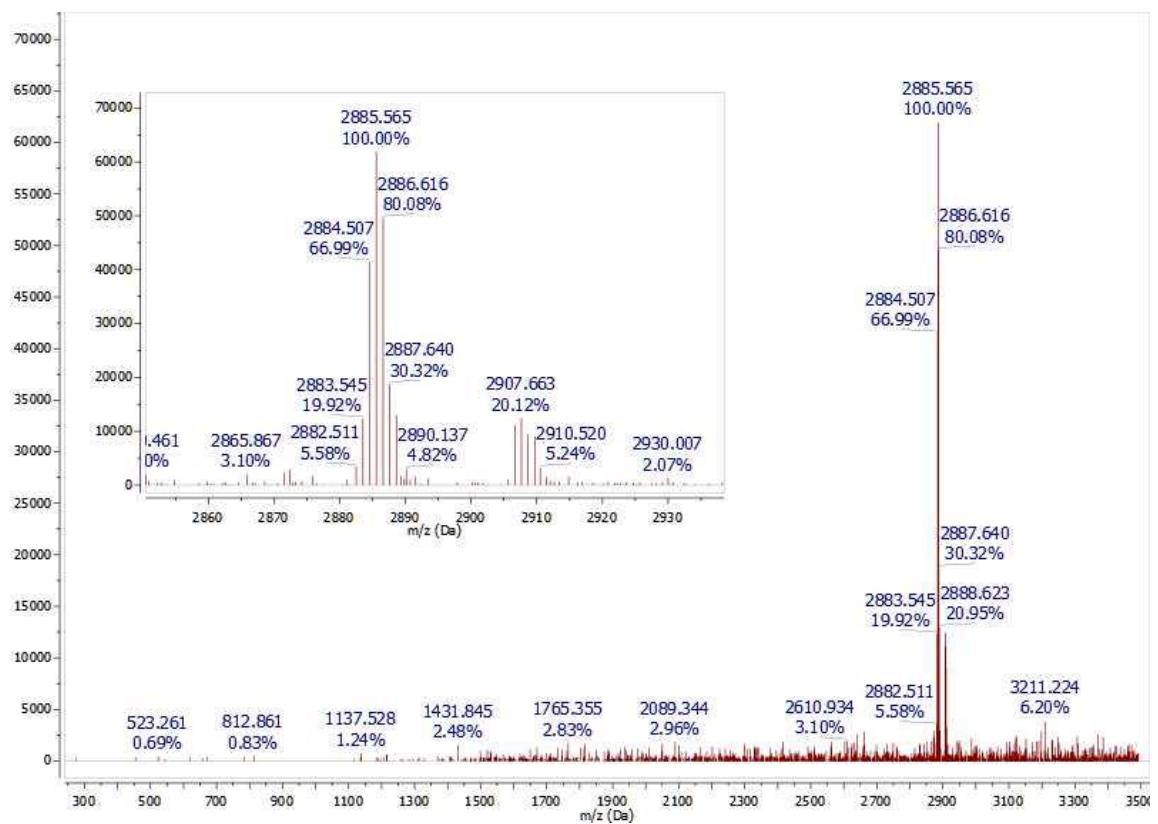


Figure S3 – MALDI mass spectrum of compound **NFA-1**.

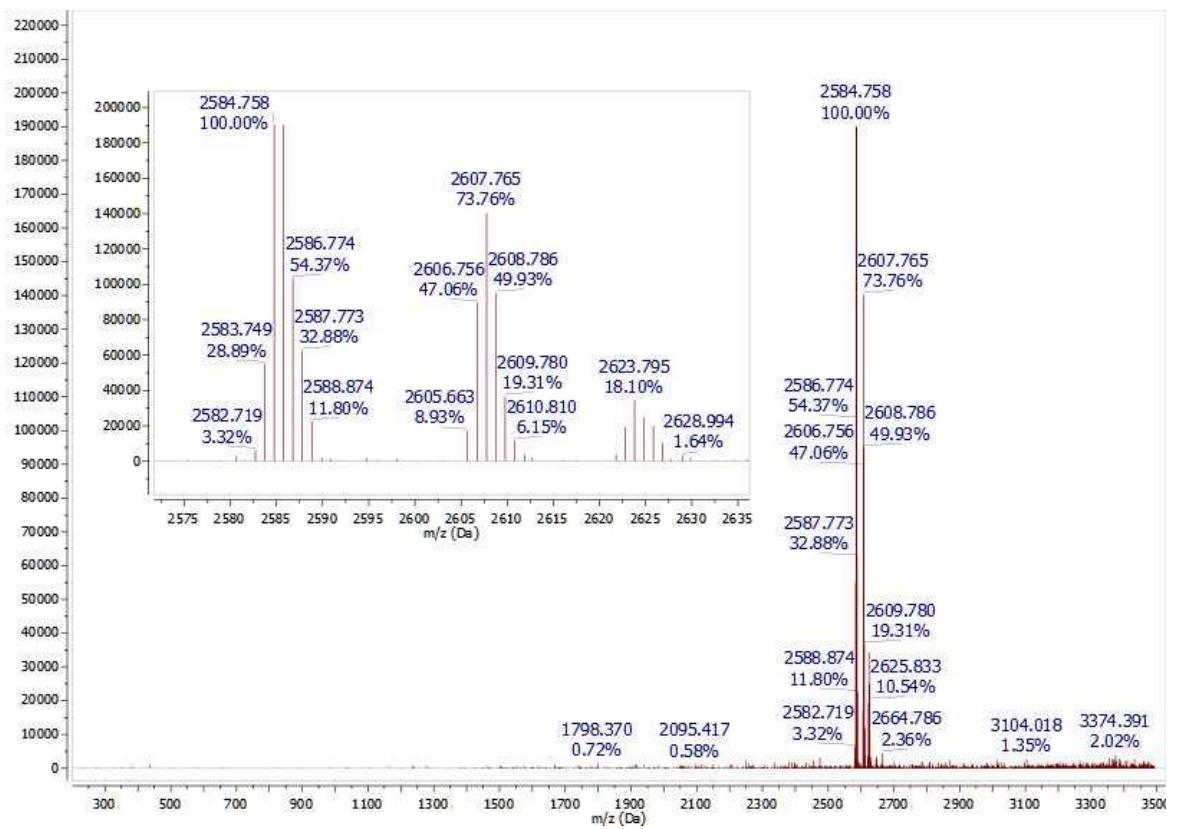


Figure S4 – MALDI mass spectrum of compound **NFA-2**.

Optical and electronic properties of acceptor molecules NFA-1, NFA-2

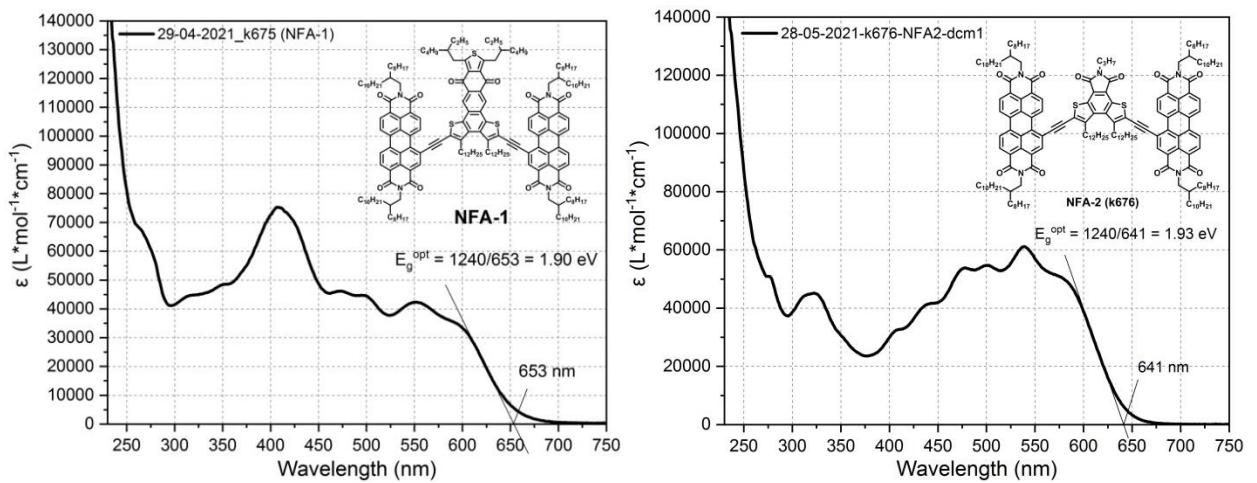
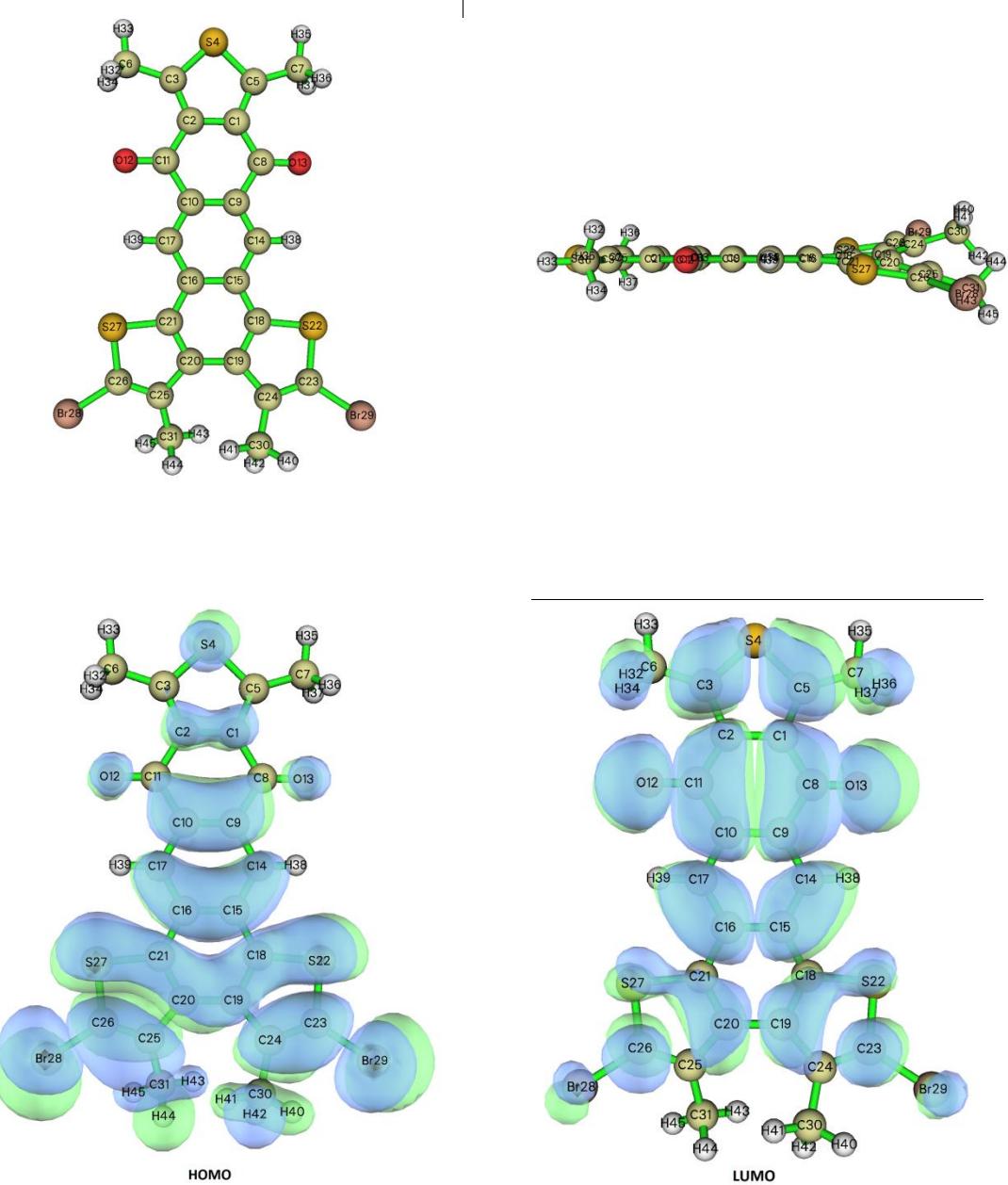



Figure S5 – UV spectra of novel non-fullerene acceptors **NFA-1** and **NFA-2** in DCM.

Theoretical calculations

Theoretical calculations for M1

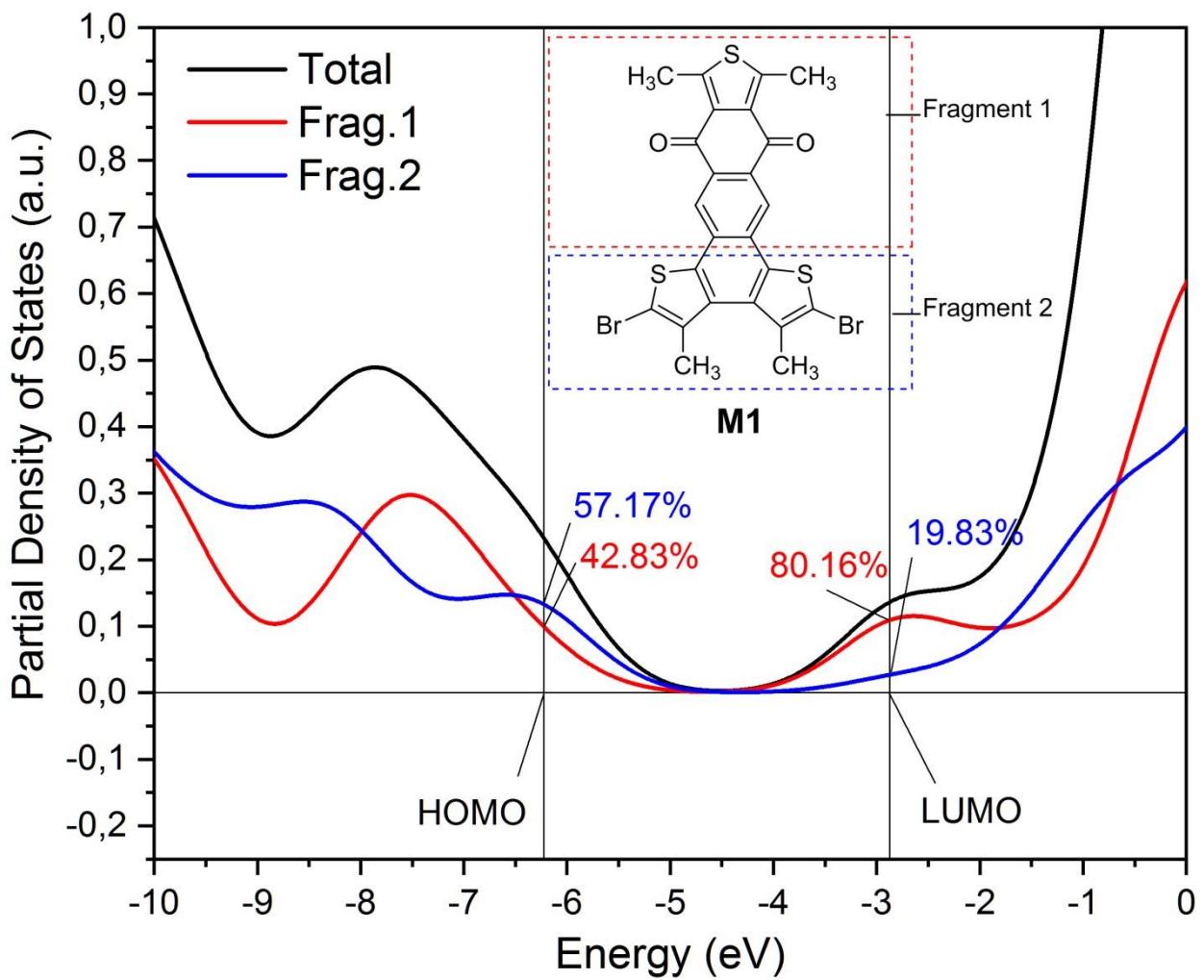
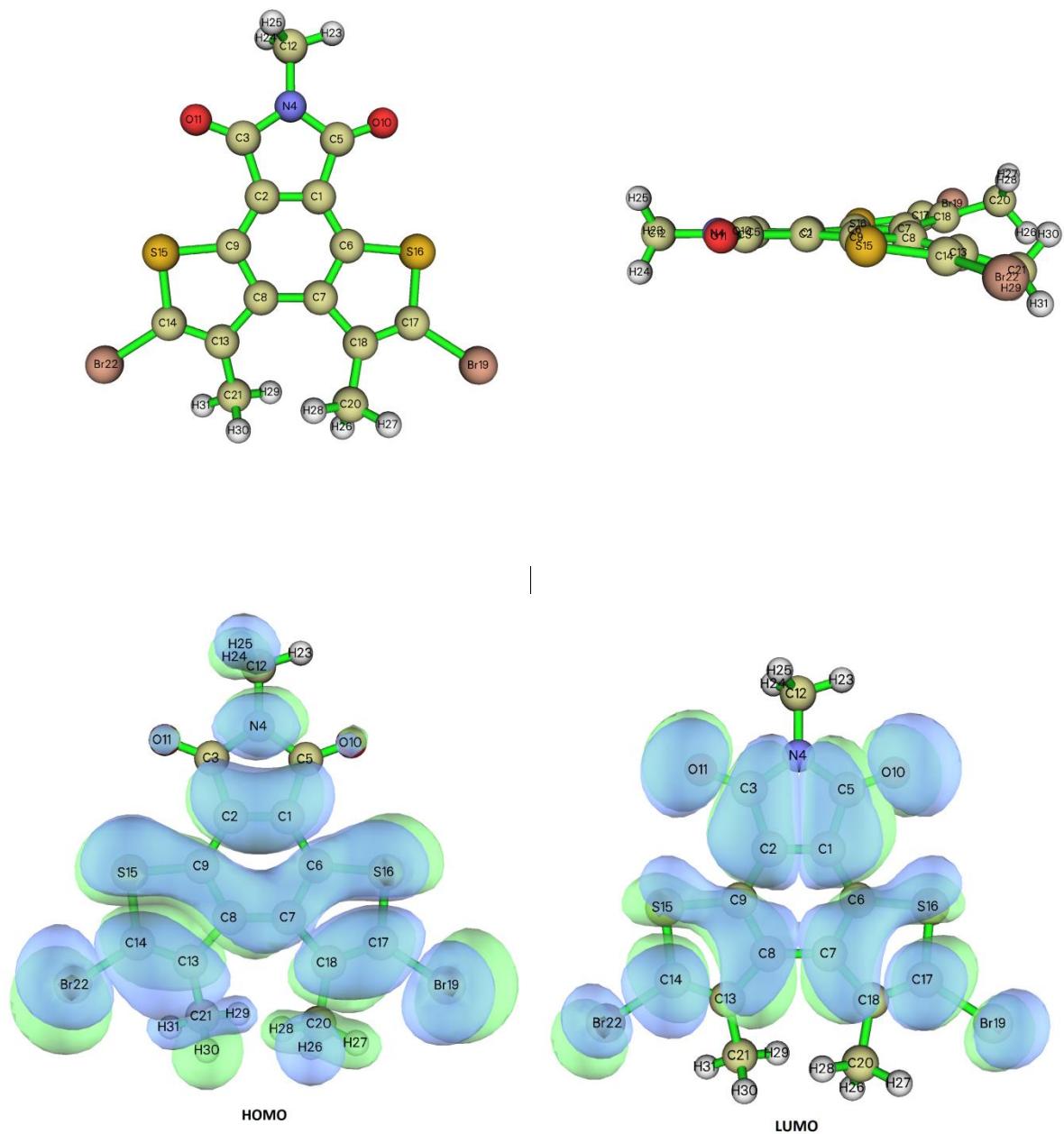


Figure S6 – Front and side views, HOMO/LUMO distributions, and PDOS curves for **M1** molecule.

Atomic coordinates for optimized structure M1:


Standard orientation:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	-5.059974	0.712070	-0.121476
2	6	0	-5.059973	-0.712073	0.121479
3	6	0	-6.325276	-1.251701	0.212637
4	16	0	-7.511894	-0.000003	0.000002
5	6	0	-6.325277	1.251697	-0.212633
6	6	0	-6.755962	-2.663918	0.453469
7	6	0	-6.755965	2.663913	-0.453465
8	6	0	-3.815153	1.479082	-0.254059
9	6	0	-2.545901	0.701570	-0.119648
10	6	0	-2.545900	-0.701571	0.119646
11	6	0	-3.815151	-1.479084	0.254061
12	8	0	-3.799293	-2.690192	0.463858
13	8	0	-3.799296	2.690190	-0.463858

14	6	0	-1.342302	1.373243	-0.228133
15	6	0	-0.108524	0.704740	-0.111504
16	6	0	-0.108523	-0.704740	0.111497
17	6	0	-1.342300	-1.373243	0.228128
18	6	0	1.154933	1.368792	-0.146917
19	6	0	2.394173	0.726821	0.001023
20	6	0	2.394173	-0.726819	-0.001040
21	6	0	1.154935	-1.368791	0.146906
22	16	0	1.318815	3.105935	-0.233644
23	6	0	3.026215	2.956608	0.043573
24	6	0	3.480684	1.675615	0.194551
25	6	0	3.480685	-1.675613	-0.194563
26	6	0	3.026219	-2.956606	-0.043574
27	16	0	1.318817	-3.105934	0.233630
28	35	0	4.050771	-4.541608	-0.194925
29	35	0	4.050763	4.541611	0.194939
30	6	0	4.872566	1.381126	0.683864
31	6	0	4.872569	-1.381125	-0.683873
32	1	0	-6.381012	-3.020726	1.415830
33	1	0	-7.843244	-2.753234	0.447607
34	1	0	-6.344906	-3.326137	-0.311924
35	1	0	-7.843247	2.753228	-0.447602
36	1	0	-6.344909	3.326132	0.311928
37	1	0	-6.381016	3.020721	-1.415826
38	1	0	-1.373452	2.442428	-0.401543
39	1	0	-1.373449	-2.442429	0.401538
40	1	0	5.214739	2.195435	1.323842
41	1	0	4.889509	0.466936	1.275083
42	1	0	5.597069	1.279945	-0.126686
43	1	0	4.889512	-0.466942	-1.275102
44	1	0	5.597068	-1.279934	0.126679
45	1	0	5.214747	-2.195440	-1.323841

E(RB3LYP) = -7416.67411141 a.u; nuclear repulsion energy 4408.7140214870 Hartrees

Theoretical calculations for M2

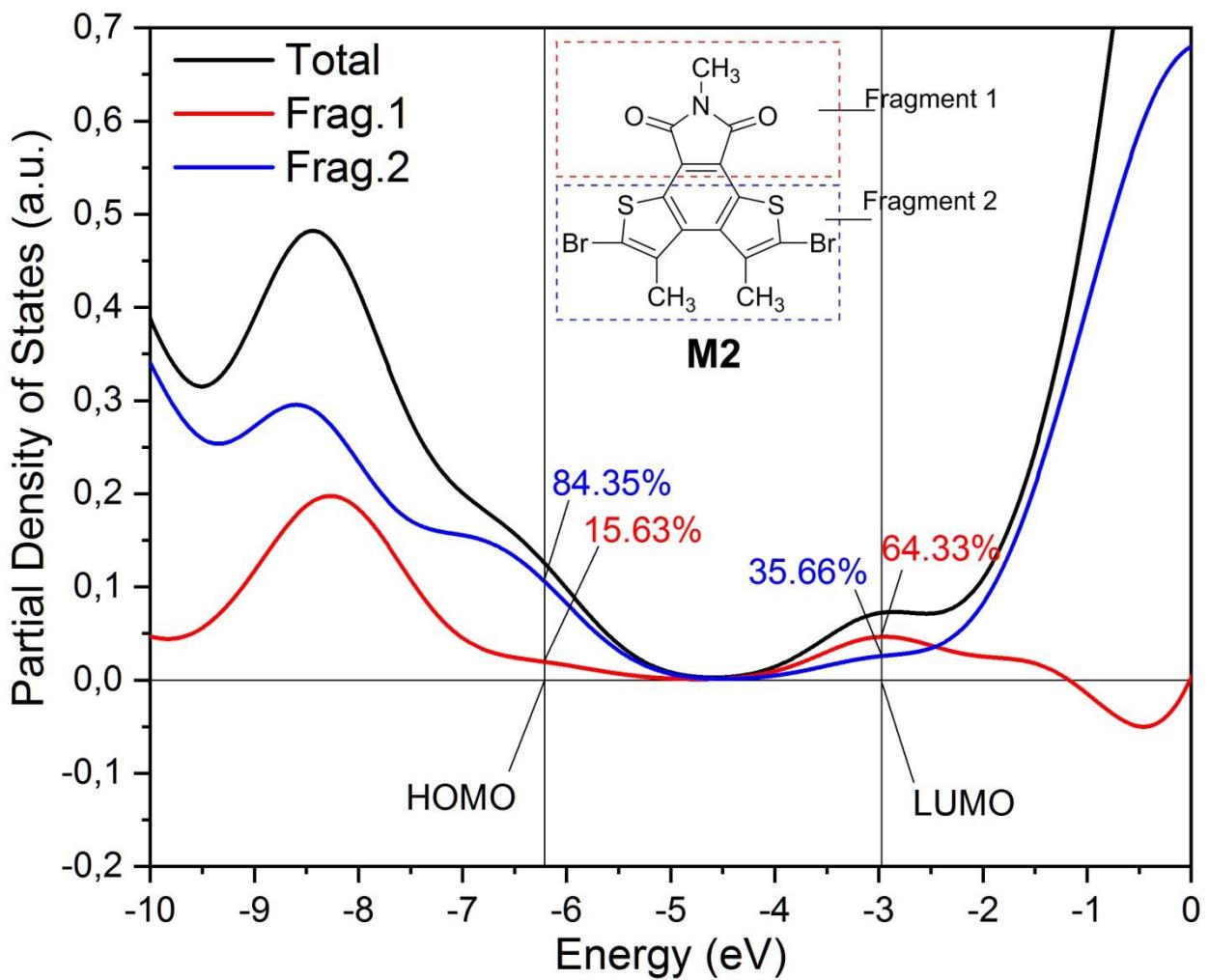


Figure S7 – Front and side views, HOMO/LUMO distributions, and PDOS curves for **M2** molecule.

Atomic coordinates for optimized structure M2:

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.682589	2.002270	-0.100236
2	6	0	-0.685009	2.001431	0.100073
3	6	0	-1.144073	3.412192	0.171143
4	7	0	-0.002419	4.199700	-0.000476
5	6	0	1.142787	3.412805	-0.171706
6	6	0	1.383459	0.803395	-0.150222
7	6	0	0.720580	-0.451698	-0.009085
8	6	0	-0.719870	-0.452594	0.009125
9	6	0	-1.384193	0.801733	0.150208
10	8	0	2.269889	3.830531	-0.341598
11	8	0	-2.269500	3.835893	0.341287
12	6	0	-0.013155	5.655209	0.000751
13	6	0	-1.683141	-1.535265	-0.146832
14	6	0	-2.957606	-1.071326	0.023106

15	16	0	-3.115941	0.645709	0.280854
16	16	0	3.115338	0.649355	-0.280801
17	6	0	2.959000	-1.067899	-0.022959
18	6	0	1.685125	-1.533263	0.147139
19	35	0	4.548896	-2.087920	0.085561
20	6	0	1.412580	-2.935181	0.619820
21	6	0	-1.409006	-2.936798	-0.619758
22	35	0	-4.546259	-2.093237	-0.085483
23	1	0	1.008532	5.995708	-0.155562
24	1	0	-0.649216	6.030255	-0.802316
25	1	0	-0.380518	6.031054	0.956769
26	1	0	1.276386	-3.642420	-0.200508
27	1	0	2.253501	-3.289656	1.216740
28	1	0	0.524927	-2.964115	1.249633
29	1	0	-0.521313	-2.964568	-1.249567
30	1	0	-1.272017	-3.644054	0.200421
31	1	0	-2.249509	-3.292107	-1.216769

E(RB3LYP) = -6727.17740423 a.u.; nuclear repulsion energy 2944.5970472088 Hartrees.

Theoretical calculations for NFA-1

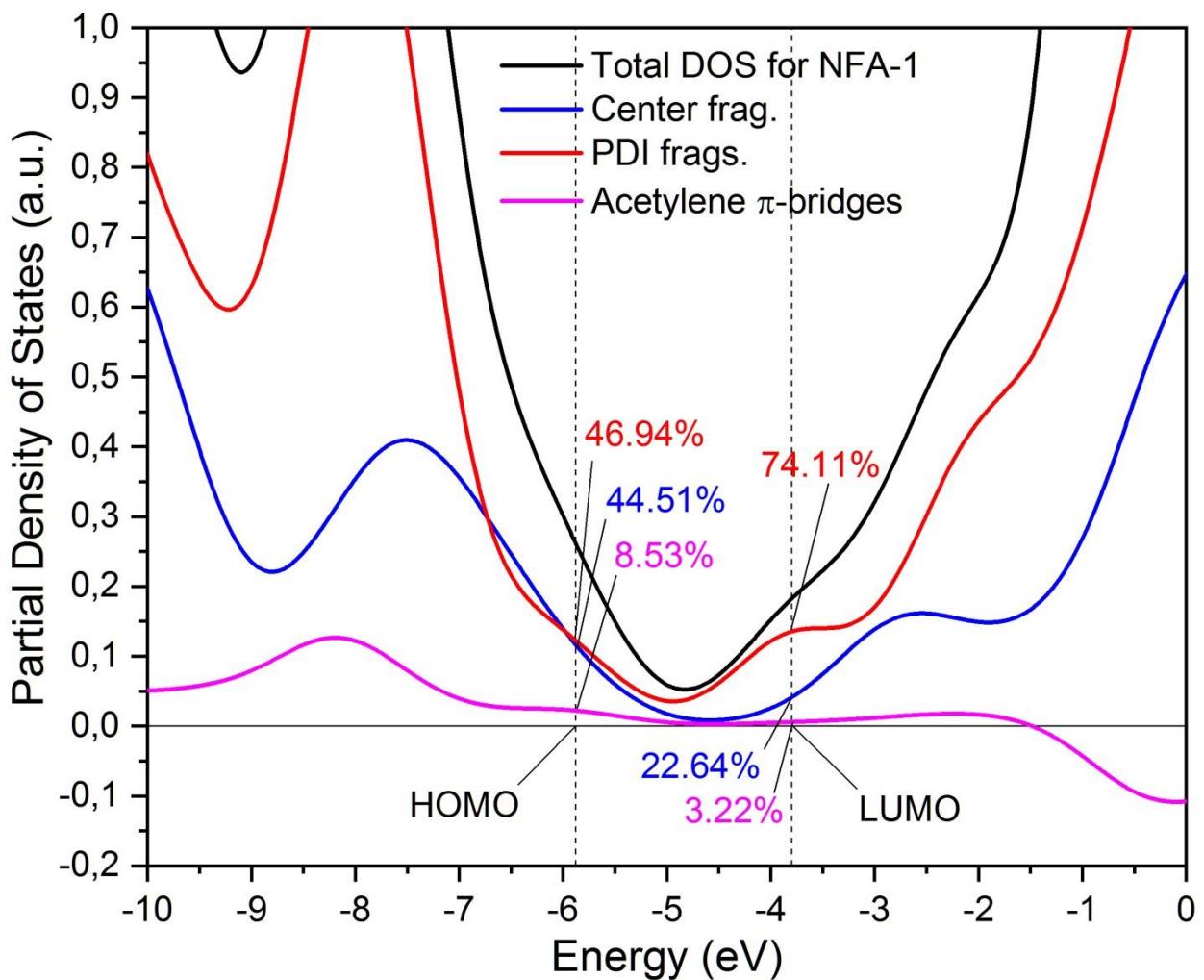


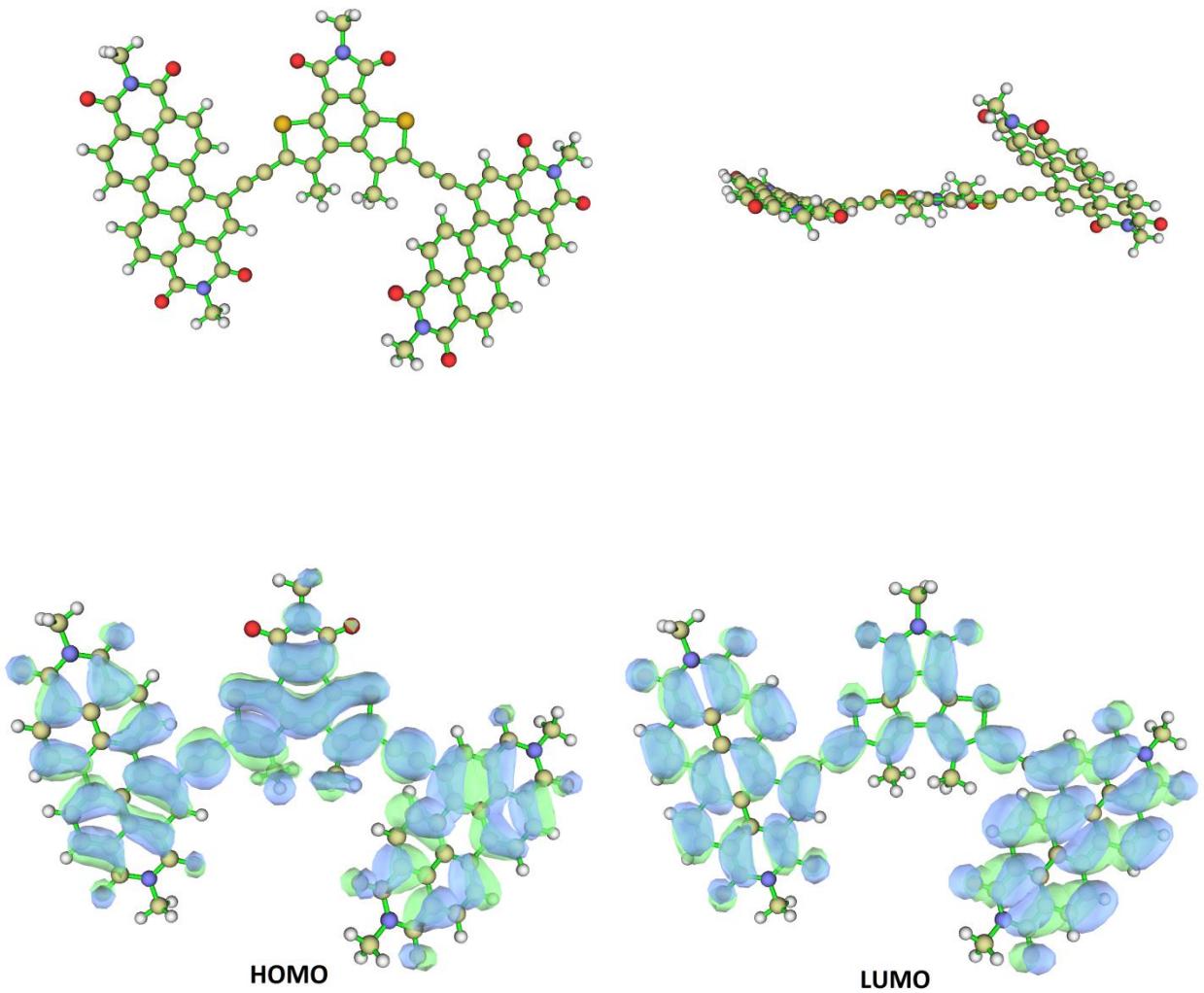
Figure S8 – Front and side views, HOMO/LUMO distributions, and PDOS curves for **NFA-1** molecule.

Atomic coordinates for optimized structure NFA-1:

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.715152	7.730107	-0.102302
2	6	0	-0.715097	7.730112	0.102229
3	6	0	-1.256948	8.995545	0.178883
4	16	0	0.000054	10.182036	0.000095
5	6	0	1.257020	8.995536	-0.178892
6	6	0	1.485383	6.485959	-0.214550
7	6	0	0.704020	5.215786	-0.100813
8	6	0	-0.703994	5.215791	0.100667
9	6	0	-1.485353	6.485969	0.214368
10	6	0	1.378943	4.012043	-0.191091
11	6	0	0.707250	2.779027	-0.092606
12	6	0	-0.707233	2.779032	0.092514
13	6	0	-1.378922	4.012053	0.190970

14	6	0	1.376166	1.516034	-0.111833
15	6	0	0.728645	0.273636	0.018293
16	6	0	-0.728640	0.273639	-0.018336
17	6	0	-1.376156	1.516043	0.111767
18	6	0	-2.675149	9.425612	0.381881
19	6	0	2.675219	9.425595	-0.381921
20	8	0	2.701171	6.468017	-0.392340
21	8	0	-2.701125	6.468036	0.392267
22	6	0	-1.669326	-0.798104	-0.235546
23	6	0	-2.980975	-0.362453	-0.132659
24	16	0	-3.108514	1.363449	0.149271
25	16	0	3.108522	1.363429	-0.149352
26	6	0	2.980977	-0.362453	0.132696
27	6	0	1.669324	-0.798100	0.235568
28	6	0	1.381317	-2.201360	0.692118
29	6	0	-1.381331	-2.201393	-0.692016
30	6	0	-4.144191	-1.127052	-0.279284
31	6	0	4.144188	-1.127042	0.279412
32	6	0	5.180814	-1.749356	0.401879
33	6	0	-5.180823	-1.749366	-0.401705
34	6	0	6.289274	-2.625931	0.506393
35	6	0	-6.289285	-2.625931	-0.506286
36	6	0	-7.652910	-2.257104	-0.383854
37	6	0	-8.628853	-3.304332	-0.298799
38	6	0	-8.245090	-4.663463	-0.506349
39	6	0	-6.884508	-4.981027	-0.731192
40	6	0	-5.939497	-3.987943	-0.697690
41	6	0	-9.996314	-3.027426	0.015824
42	6	0	-10.914459	-4.078437	0.030093
43	6	0	-10.531532	-5.394096	-0.222029
44	6	0	-9.204455	-5.697210	-0.478499
45	6	0	-8.814467	-7.105182	-0.717777
46	7	0	-7.455730	-7.357328	-0.952276
47	6	0	-6.459712	-6.380448	-0.962834
48	6	0	-8.125502	-0.867506	-0.333068
49	6	0	-9.467585	-0.600715	0.088681
50	6	0	-10.399076	-1.652953	0.321587
51	6	0	-7.330568	0.217535	-0.705861
52	6	0	-7.773473	1.537147	-0.584219
53	6	0	-9.028535	1.817272	-0.077338
54	6	0	-9.896540	0.750840	0.254053
55	6	0	-11.196748	1.028004	0.734386
56	6	0	-12.060286	-0.015064	1.022051
57	6	0	-11.668811	-1.336815	0.806842
58	6	0	-9.455917	3.224489	0.083859
59	7	0	-10.744507	3.438355	0.589808
60	6	0	-11.643724	2.423268	0.928168
61	6	0	-11.210267	4.819169	0.783750
62	8	0	-8.728639	4.164718	-0.204899
63	8	0	-12.751323	2.708916	1.363865
64	8	0	-9.630098	-8.015880	-0.714882
65	8	0	-5.293826	-6.693302	-1.159202
66	6	0	-7.021335	-8.740852	-1.195193
67	6	0	5.939479	-3.987942	0.697784
68	6	0	6.884479	-4.981039	0.731232
69	6	0	8.245056	-4.663486	0.506344
70	6	0	8.628827	-3.304356	0.298804
71	6	0	7.652899	-2.257117	0.383910


72	6	0	9.204407	-5.697244	0.478440
73	6	0	10.531479	-5.394142	0.221930
74	6	0	10.914412	-4.078482	-0.030182
75	6	0	9.996281	-3.027460	-0.015860
76	6	0	10.399050	-1.652987	-0.321611
77	6	0	9.467578	-0.600741	-0.088661
78	6	0	8.125504	-0.867524	0.333127
79	6	0	9.896543	0.750811	-0.254027
80	6	0	9.028560	1.817248	0.077405
81	6	0	7.773511	1.537131	0.584319
82	6	0	7.330594	0.217522	0.705957
83	6	0	11.668774	-1.336855	-0.806897
84	6	0	12.060258	-0.015106	-1.022099
85	6	0	11.196740	1.027968	-0.734395
86	6	0	11.643725	2.423229	-0.928173
87	7	0	10.744530	3.438322	-0.589773
88	6	0	9.455956	3.224463	-0.083780
89	6	0	6.459674	-6.380458	0.962865
90	7	0	7.455680	-7.357350	0.952254
91	6	0	8.814410	-7.105217	0.717702
92	6	0	11.210297	4.819133	-0.783718
93	8	0	12.751313	2.708870	-1.363901
94	8	0	8.728692	4.164696	0.205000
95	6	0	7.021279	-8.740871	1.195174
96	8	0	5.293793	-6.693301	1.159278
97	8	0	9.630034	-8.015921	0.714781
98	1	0	2.452232	4.043423	-0.335965
99	1	0	-2.452211	4.043440	0.335841
100	1	0	-3.056555	9.052417	1.335483
101	1	0	-2.765164	10.512745	0.371331
102	1	0	-3.316850	9.012174	-0.399522
103	1	0	2.765257	10.512725	-0.371269
104	1	0	3.316950	9.012067	0.399409
105	1	0	3.056570	9.052485	-1.335579
106	1	0	2.226985	-2.577725	1.268927
107	1	0	0.500612	-2.230419	1.333420
108	1	0	1.222254	-2.892328	-0.137778
109	1	0	-0.500645	-2.230492	-1.333344
110	1	0	-1.222240	-2.892309	0.137918
111	1	0	-2.227016	-2.577795	-1.268774
112	1	0	-4.896463	-4.248128	-0.818733
113	1	0	-11.957599	-3.884989	0.235840
114	1	0	-11.265084	-6.189614	-0.209704
115	1	0	-6.344861	0.052547	-1.107823
116	1	0	-7.126647	2.353660	-0.878360
117	1	0	-13.049700	0.206053	1.401130
118	1	0	-12.381361	-2.119172	1.026832
119	1	0	-10.409525	5.488665	0.488723
120	1	0	-12.095180	4.999688	0.173425
121	1	0	-11.466938	4.977114	1.831100
122	1	0	-7.901252	-9.374938	-1.193852
123	1	0	-6.513426	-8.801542	-2.157237
124	1	0	-6.331236	-9.054881	-0.411827
125	1	0	4.896447	-4.248118	0.818863
126	1	0	11.265021	-6.189668	0.209562
127	1	0	11.957548	-3.885043	-0.235963
128	1	0	7.126702	2.353647	0.878491
129	1	0	6.344898	0.052541	1.107946

130	1	0	12.381310	-2.119217	-1.026919
131	1	0	13.049663	0.206005	-1.401204
132	1	0	10.409570	5.488634	-0.488661
133	1	0	12.095229	4.999639	-0.173418
134	1	0	11.466938	4.977083	-1.831075
135	1	0	7.901189	-9.374968	1.193790
136	1	0	6.513410	-8.801566	2.157239
137	1	0	6.331145	-9.054884	0.411834

E(RB3LYP) = -5239.76167879 A.U.; nuclear repulsion energy 15861.1218142017 Hartrees.

Theoretical calculations for NFA-2

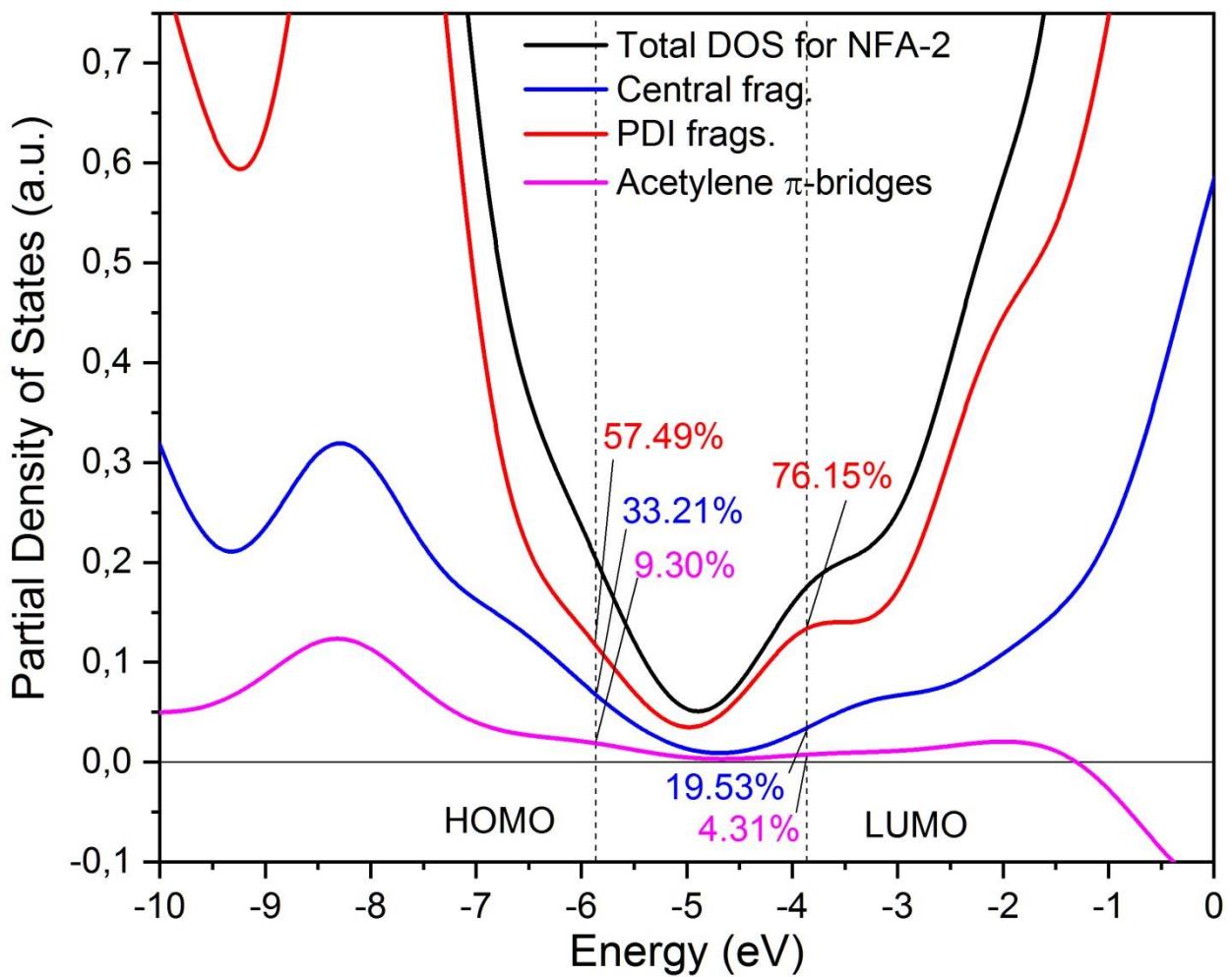


Figure S9 – Front and side views, HOMO/LUMO distributions, and PDOS curves for **NFA-2** molecule.

Atomic coordinates for optimized structure NFA-2:

Standard orientation:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	7	0	0.707254	-6.914269	0.706816
2	6	0	1.680931	-5.908802	0.700508
3	6	0	0.956491	-4.642151	0.418668
4	6	0	-0.387017	-4.932909	0.276461
5	6	0	-0.566158	-6.397238	0.455697
6	6	0	1.416700	-3.341790	0.246429
7	6	0	0.522944	-2.272132	-0.070648
8	6	0	-0.897714	-2.548698	-0.038819
9	6	0	-1.307626	-3.914685	0.056979
10	8	0	-1.589757	-7.048403	0.401956
11	8	0	2.868490	-6.071866	0.891064
12	6	0	0.977840	-8.325505	0.940138
13	6	0	-2.047274	-1.672190	-0.019104
14	6	0	-3.239027	-2.376602	-0.033832

15	16	0	-3.030697	-4.123851	-0.010637
16	16	0	3.085399	-2.859516	0.283400
17	6	0	2.627198	-1.246864	-0.250859
18	6	0	1.263157	-1.083393	-0.427881
19	6	0	0.745583	0.168284	-1.080059
20	6	0	-2.067941	-0.178925	0.148655
21	6	0	-4.544276	-1.866314	-0.026811
22	6	0	3.631204	-0.303243	-0.498991
23	6	0	-5.692770	-1.469628	-0.015882
24	6	0	4.543856	0.473397	-0.699662
25	6	0	-7.071929	-1.161554	-0.143077
26	6	0	-7.677036	0.084293	0.153875
27	6	0	-9.033213	0.291829	-0.260835
28	6	0	-9.795081	-0.791958	-0.791057
29	6	0	-9.186239	-2.057210	-0.965672
30	6	0	-7.855095	-2.218254	-0.675850
31	6	0	5.485665	1.510810	-0.911600
32	6	0	4.914170	2.755900	-1.281012
33	6	0	5.676914	3.885627	-1.433046
34	6	0	7.062977	3.839894	-1.151424
35	6	0	7.665892	2.605419	-0.764423
36	6	0	6.887423	1.402247	-0.729124
37	6	0	7.830798	5.019613	-1.244376
38	6	0	9.179413	4.986228	-0.930168
39	6	0	9.771709	3.799741	-0.501976
40	6	0	9.047317	2.611962	-0.393719
41	6	0	9.665015	1.377360	0.095338
42	6	0	8.938474	0.157901	-0.022537
43	6	0	7.589461	0.132796	-0.500689
44	6	0	9.585776	-1.067846	0.317633
45	6	0	8.929332	-2.301587	0.099820
46	6	0	7.668198	-2.308427	-0.465834
47	6	0	7.009897	-1.110564	-0.756967
48	6	0	10.947325	1.349568	0.644809
49	6	0	11.550021	0.152163	1.032598
50	6	0	10.892121	-1.053147	0.857356
51	6	0	5.028536	5.150082	-1.849717
52	7	0	5.844006	6.276908	-1.958533
53	6	0	7.215962	6.296676	-1.671893
54	6	0	11.563894	-2.315829	1.230806
55	7	0	10.867962	-3.505822	1.000182
56	6	0	9.586285	-3.583178	0.440564
57	6	0	5.190599	7.521780	-2.388931
58	8	0	3.833347	5.229581	-2.096391
59	8	0	7.863816	7.328114	-1.776145
60	8	0	9.046175	-4.663883	0.250153
61	8	0	12.684314	-2.348848	1.722071
62	6	0	11.555429	-4.750960	1.372192
63	6	0	-9.649567	1.579854	-0.179913
64	6	0	-10.989248	1.712943	-0.546482
65	6	0	-11.734275	0.632844	-1.016602
66	6	0	-11.147165	-0.614187	-1.152383
67	6	0	-6.999091	1.175515	0.864157
68	6	0	-7.575051	2.485274	0.844215
69	6	0	-8.860909	2.725316	0.280121
70	6	0	-6.862253	3.574143	1.429765
71	6	0	-7.386805	4.884760	1.356741
72	6	0	-8.604211	5.104227	0.735460

73	6	0	-9.335847	4.035572	0.215185
74	6	0	-5.826161	0.987219	1.595836
75	6	0	-5.157495	2.051062	2.207430
76	6	0	-5.638714	3.342694	2.100384
77	6	0	-11.949933	-1.742451	-1.676850
78	7	0	-11.297727	-2.975215	-1.816164
79	6	0	-9.957729	-3.202706	-1.500332
80	6	0	-4.885596	4.458681	2.714891
81	7	0	-5.438927	5.738794	2.586954
82	6	0	-6.648227	6.021869	1.945027
83	6	0	-4.721590	6.883028	3.168001
84	8	0	-3.828848	4.284828	3.306050
85	8	0	-7.054191	7.174902	1.888821
86	6	0	-12.053186	-4.124379	-2.336611
87	8	0	-13.128205	-1.617947	-1.977725
88	8	0	-9.466545	-4.310032	-1.666134
89	1	0	2.046411	-8.435238	1.114060
90	1	0	0.427915	-8.676756	1.814301
91	1	0	0.687221	-8.916161	0.070123
92	1	0	0.383522	0.902639	-0.358878
93	1	0	1.546585	0.640633	-1.649337
94	1	0	-0.064811	-0.060255	-1.772093
95	1	0	-1.285042	0.148562	0.832996
96	1	0	-1.941577	0.353058	-0.795363
97	1	0	-3.025592	0.128864	0.566117
98	1	0	-7.385431	-3.174328	-0.864715
99	1	0	3.846454	2.813901	-1.445006
100	1	0	9.765590	5.892323	-1.010745
101	1	0	10.824074	3.818484	-0.256421
102	1	0	7.185617	-3.254789	-0.673295
103	1	0	6.029171	-1.169209	-1.199176
104	1	0	11.504577	2.265689	0.780462
105	1	0	12.545175	0.155350	1.458261
106	1	0	5.954139	8.285590	-2.488655
107	1	0	4.689946	7.359902	-3.342814
108	1	0	4.450017	7.827355	-1.649261
109	1	0	10.889971	-5.579820	1.156295
110	1	0	12.477073	-4.850423	0.798576
111	1	0	11.801742	-4.731341	2.433515
112	1	0	-11.482106	2.671328	-0.464417
113	1	0	-12.773857	0.762292	-1.287863
114	1	0	-8.992395	6.112663	0.672849
115	1	0	-10.291579	4.249206	-0.242284
116	1	0	-5.415114	-0.002817	1.710514
117	1	0	-4.246927	1.870250	2.764064
118	1	0	-3.800653	6.514902	3.607024
119	1	0	-4.503104	7.613202	2.389176
120	1	0	-5.338080	7.356844	3.932026
121	1	0	-13.072678	-3.802185	-2.518553
122	1	0	-11.598627	-4.475483	-3.263053
123	1	0	-12.037969	-4.934339	-1.607699

E(RB3LYP) = -4550.26314109 A.U.; nuclear repulsion energy 13581.9958501262 Hartrees.

NMR characterization

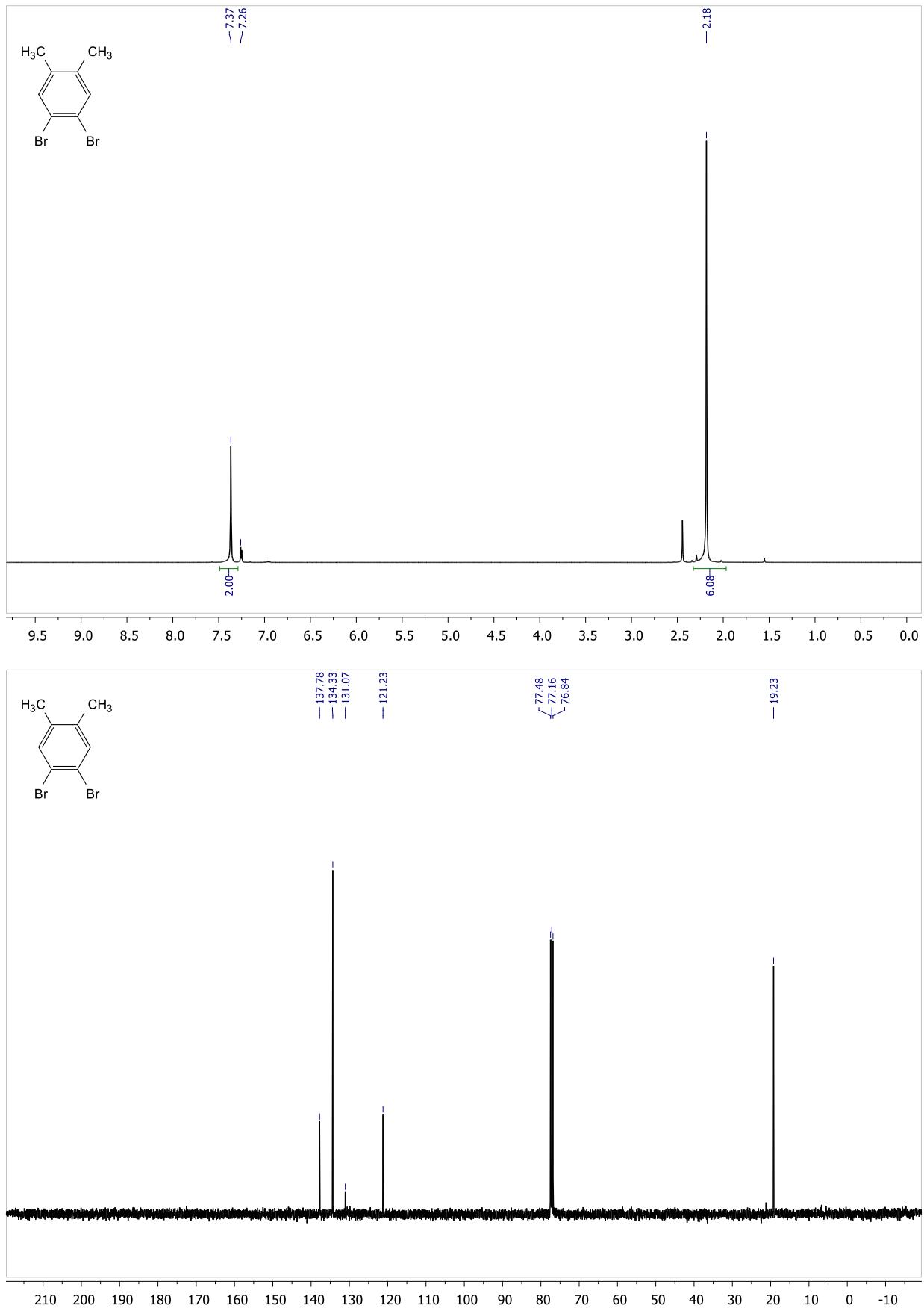


Figure S10 – ^1H and ^{13}C NMR spectra of 1,2-Dibromo-4,5-dimethylbenzene (**1**) in CDCl_3 .

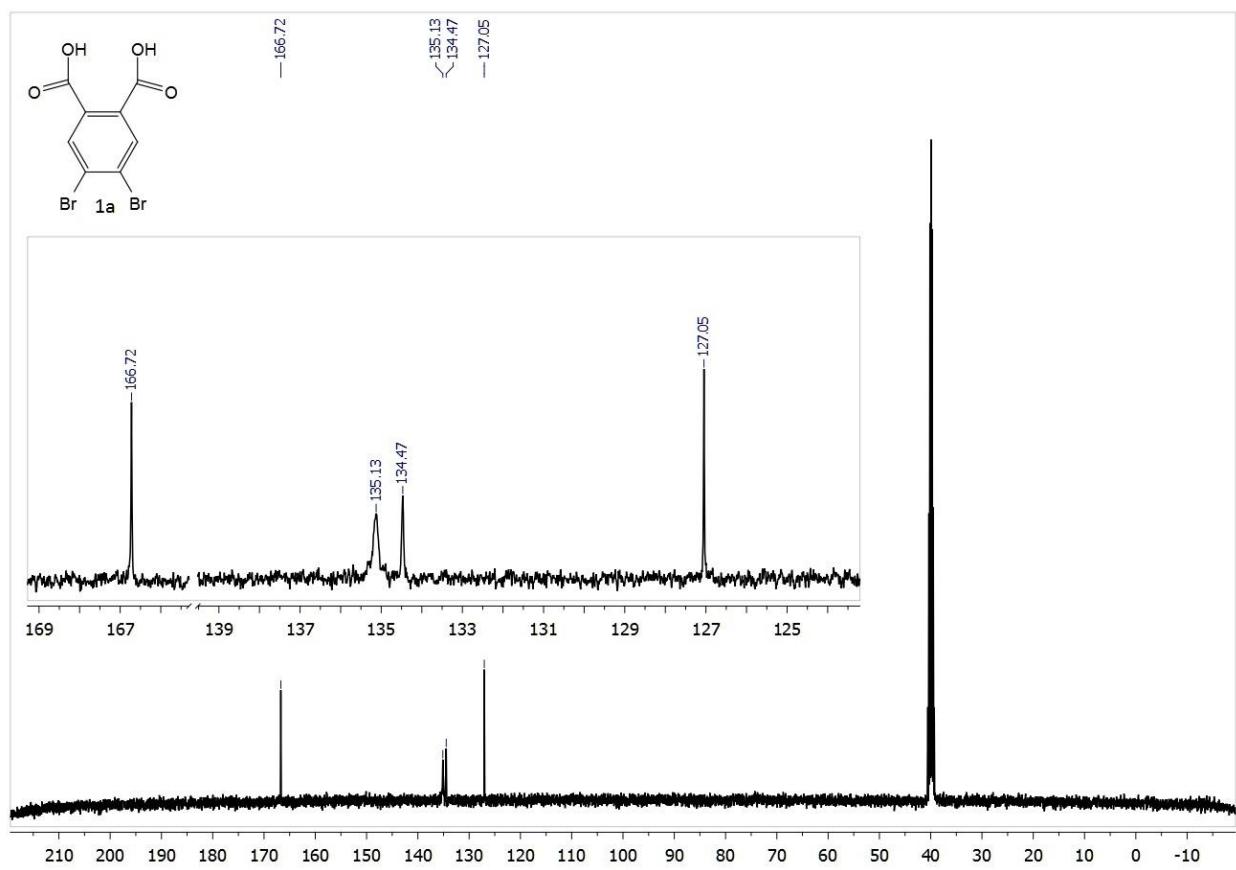
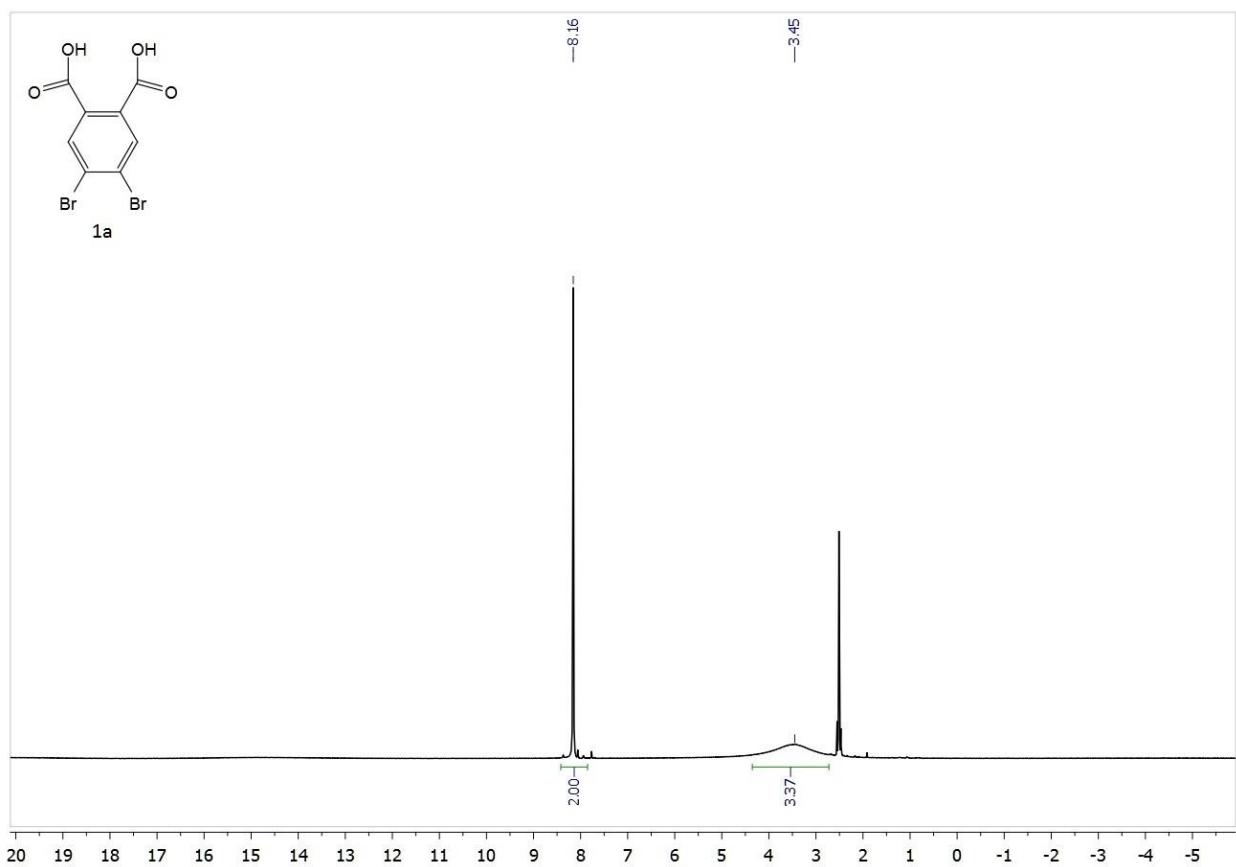



Figure S11 – ¹H and ¹³C NMR spectra of 4,5-Dibromophthalic acid (1') in CDCl₃.

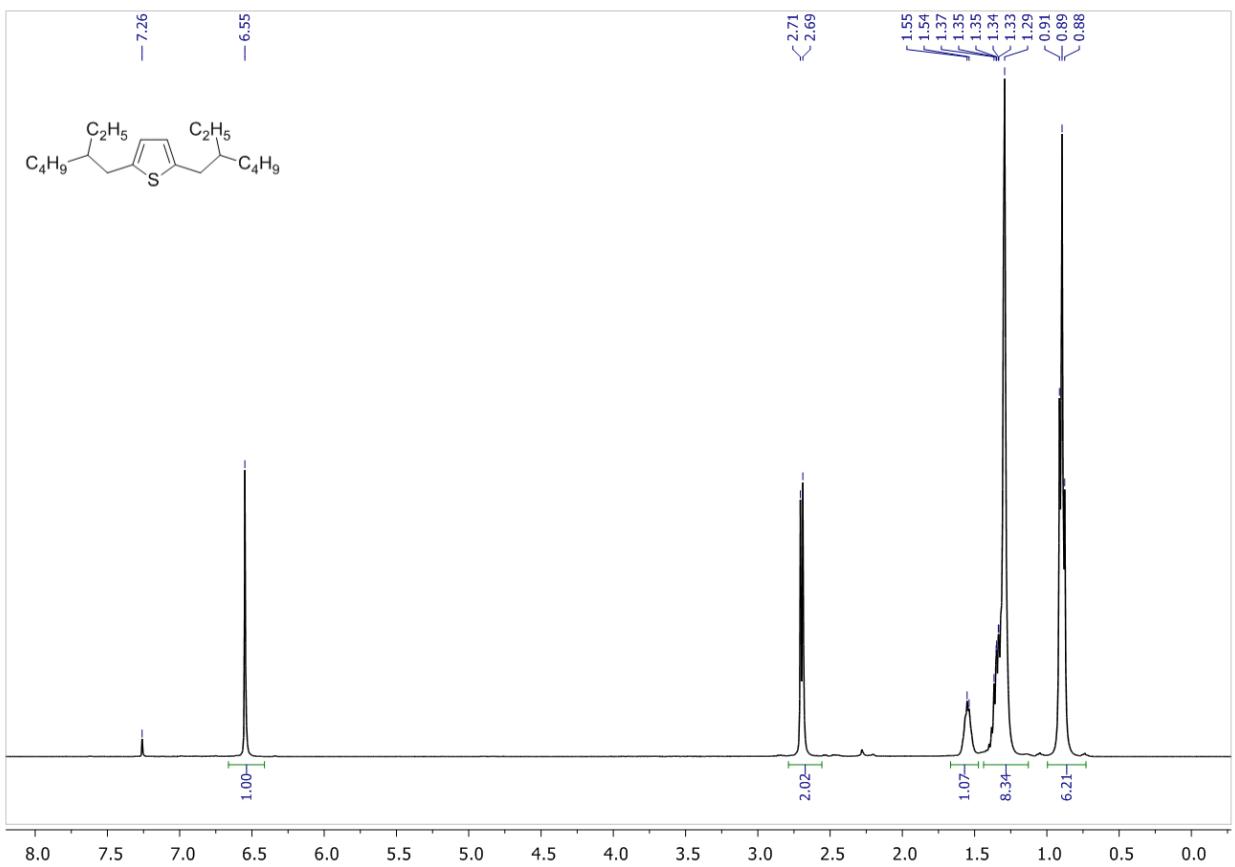


Figure S12 – ^1H NMR spectrum of 2,5-Bis(2-ethylhexyl)thiophene in CDCl_3 .

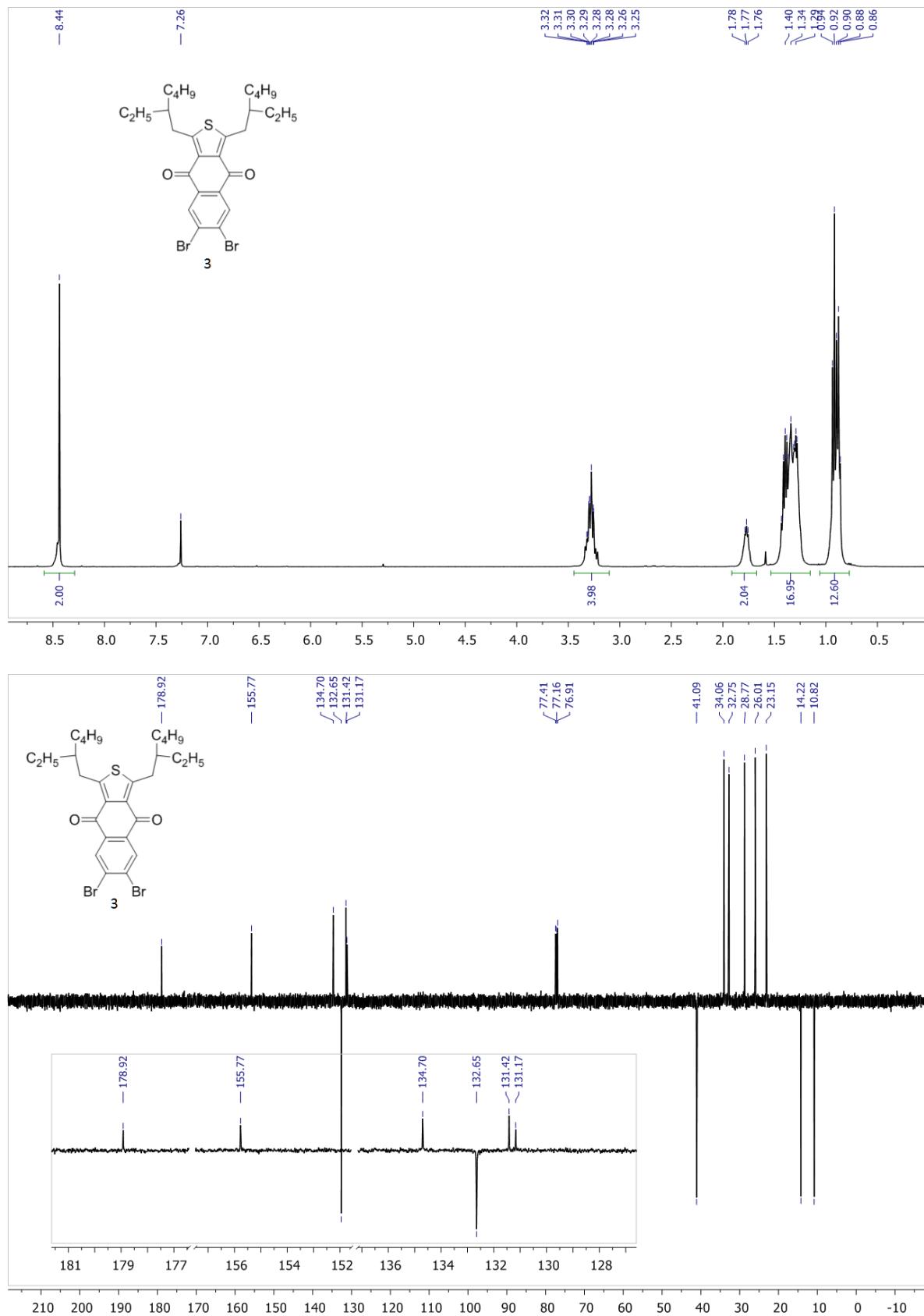


Figure S13 – ^1H and ^{13}C NMR spectra of 6,7-Dibromo-1,3-bis(2-ethylhexyl)naphtho-[2,3-*c*]thiophene-4,9-dione (**3**) in CDCl_3 .

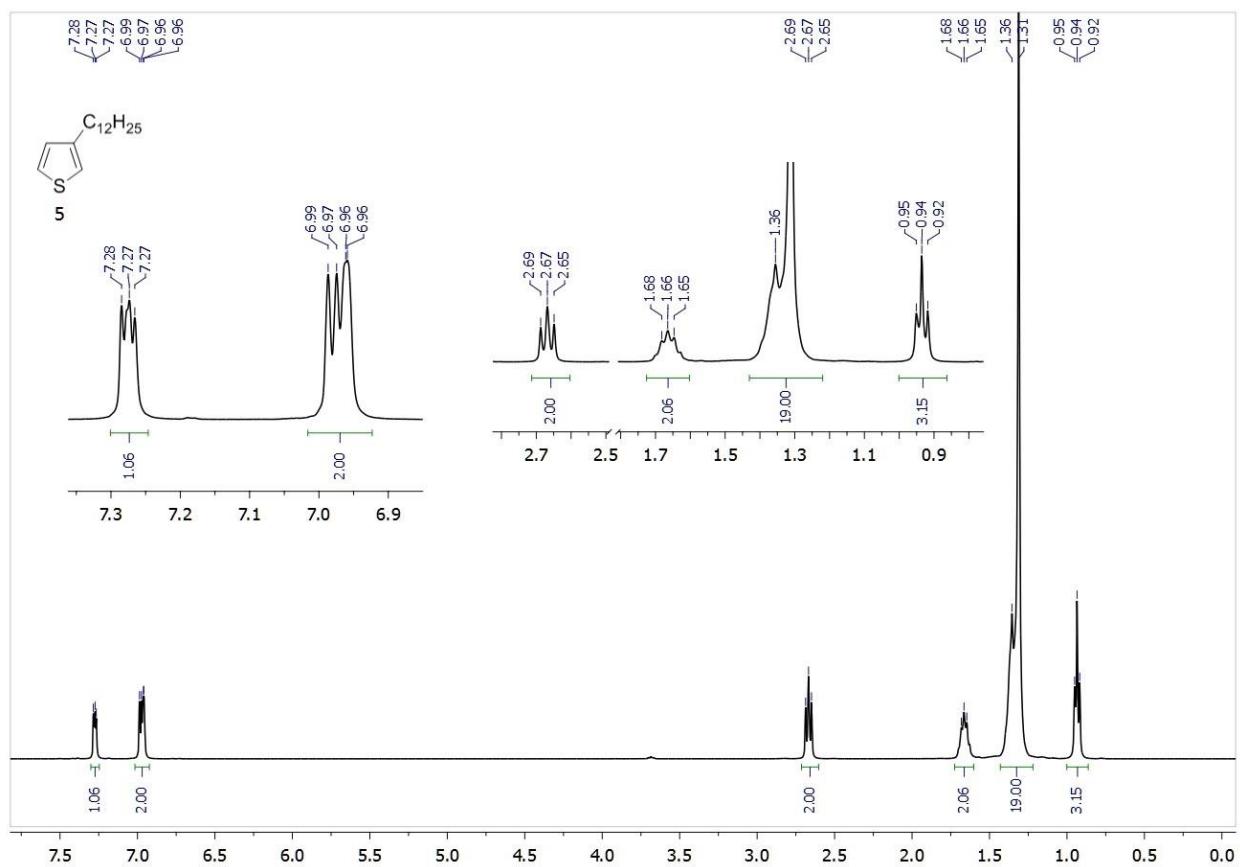


Figure S14 – ^1H NMR spectrum of 3-Dodecylthiophene (**5**) in CDCl_3 .

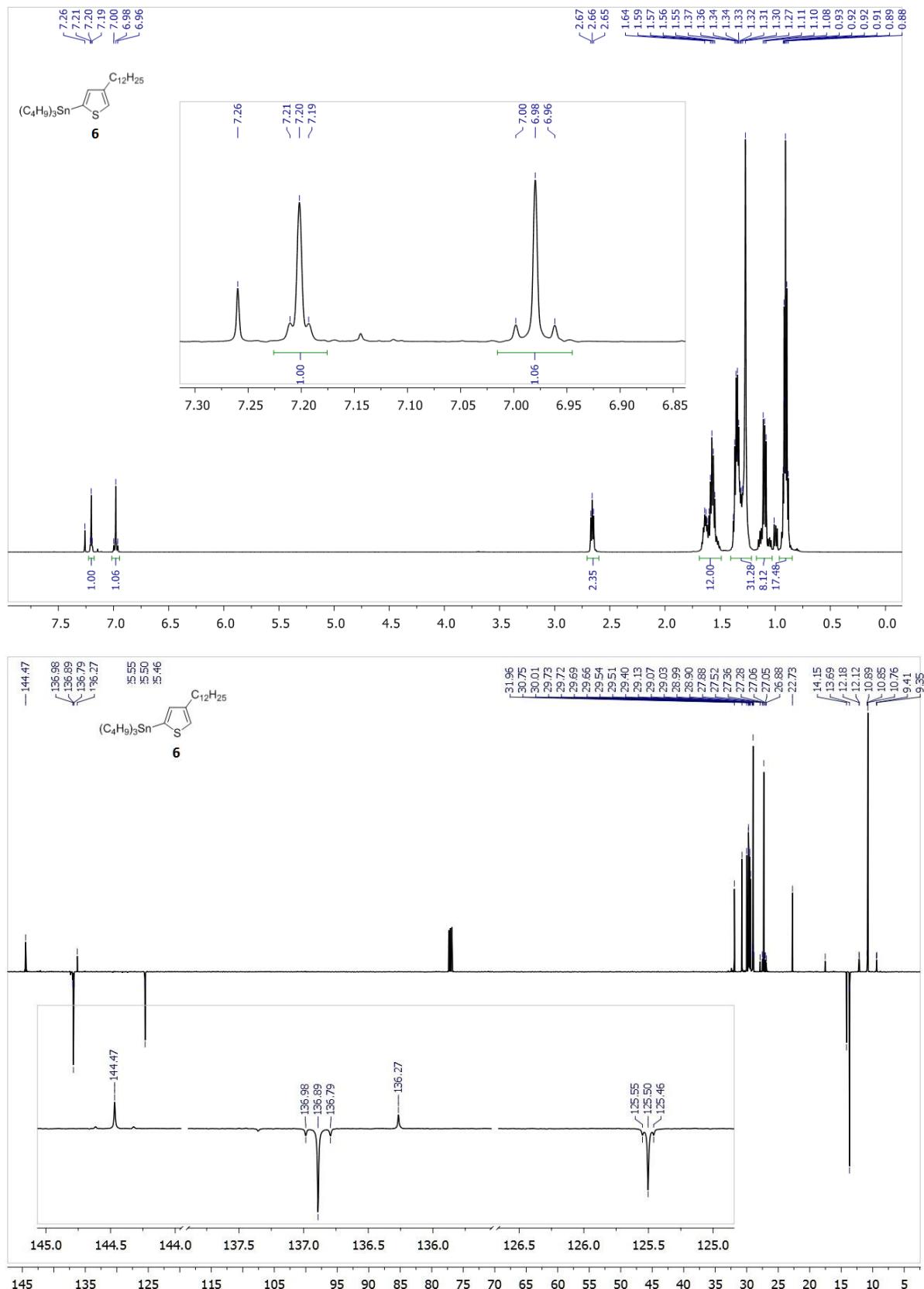


Figure S15 – ^1H and ^{13}C NMR spectra of Tributyl(4-dodecylthiophen-2-yl)stannane (**6**) in CDCl_3 .

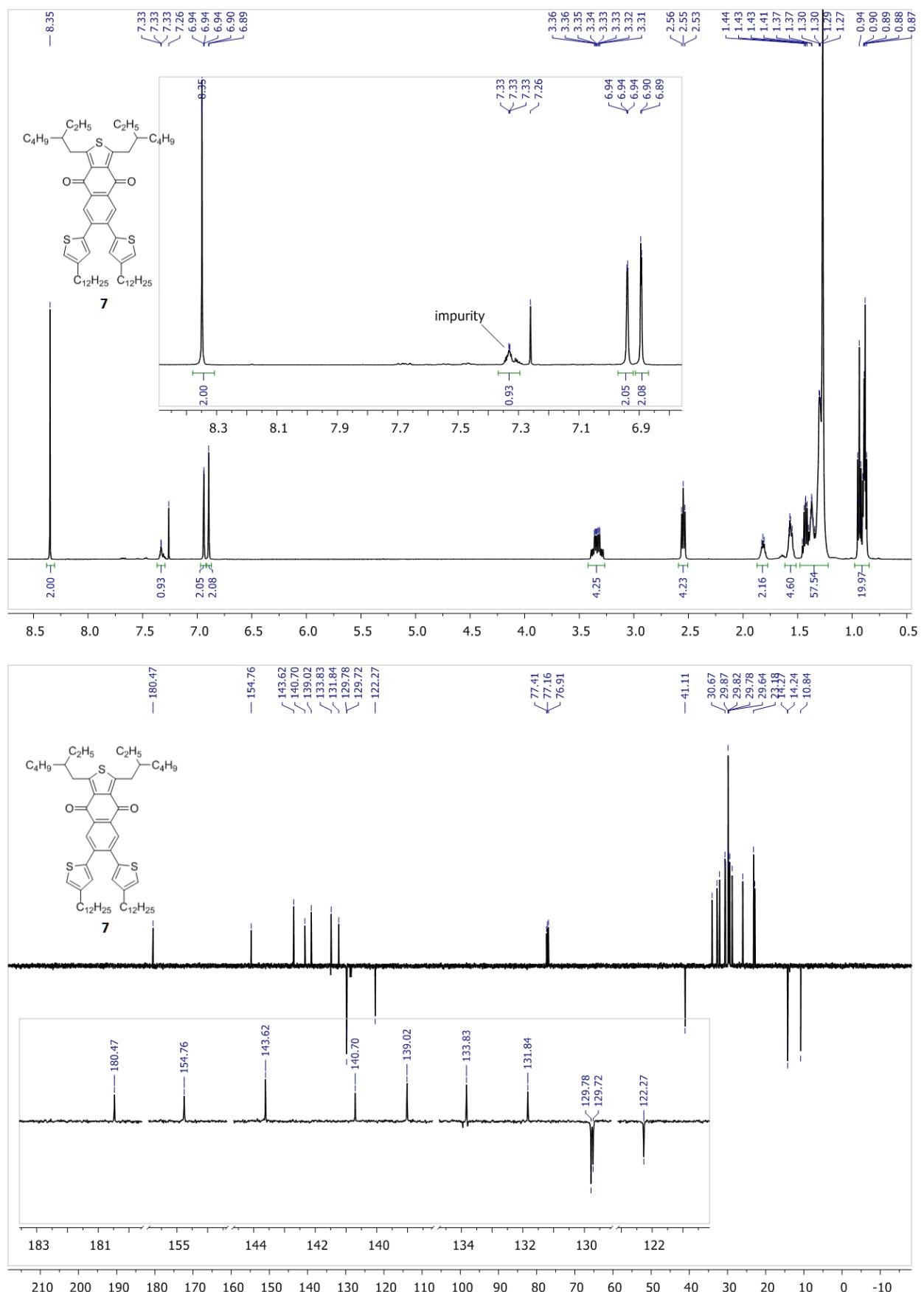


Figure S16 – ^1H and ^{13}C NMR spectra of 6,7-Bis(4-dodecylthiophen-2-yl)-1,3-bis(2-ethylhexyl)naphtho[2,3-*c*]thiophene-4,9-dione (**7**) in CDCl_3 .

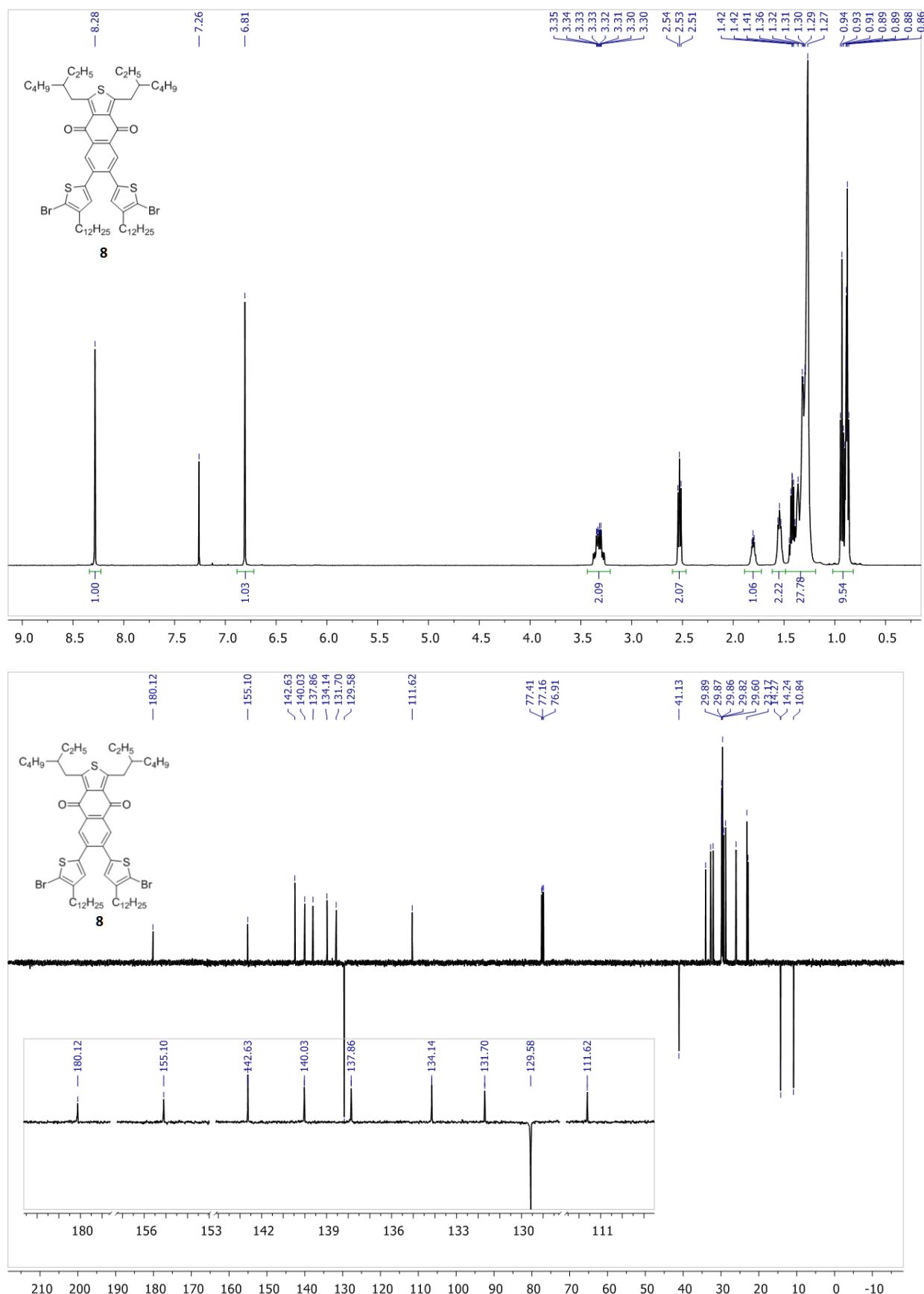


Figure S17 – ^1H and ^{13}C NMR spectra of 6,7-Bis(5-bromo-4-dodecylthiophen-2-yl)-1,3-bis(2-ethylhexyl)naphtho[2,3-*c*]thiophene-4,9-dione (**8**) in CDCl_3 .

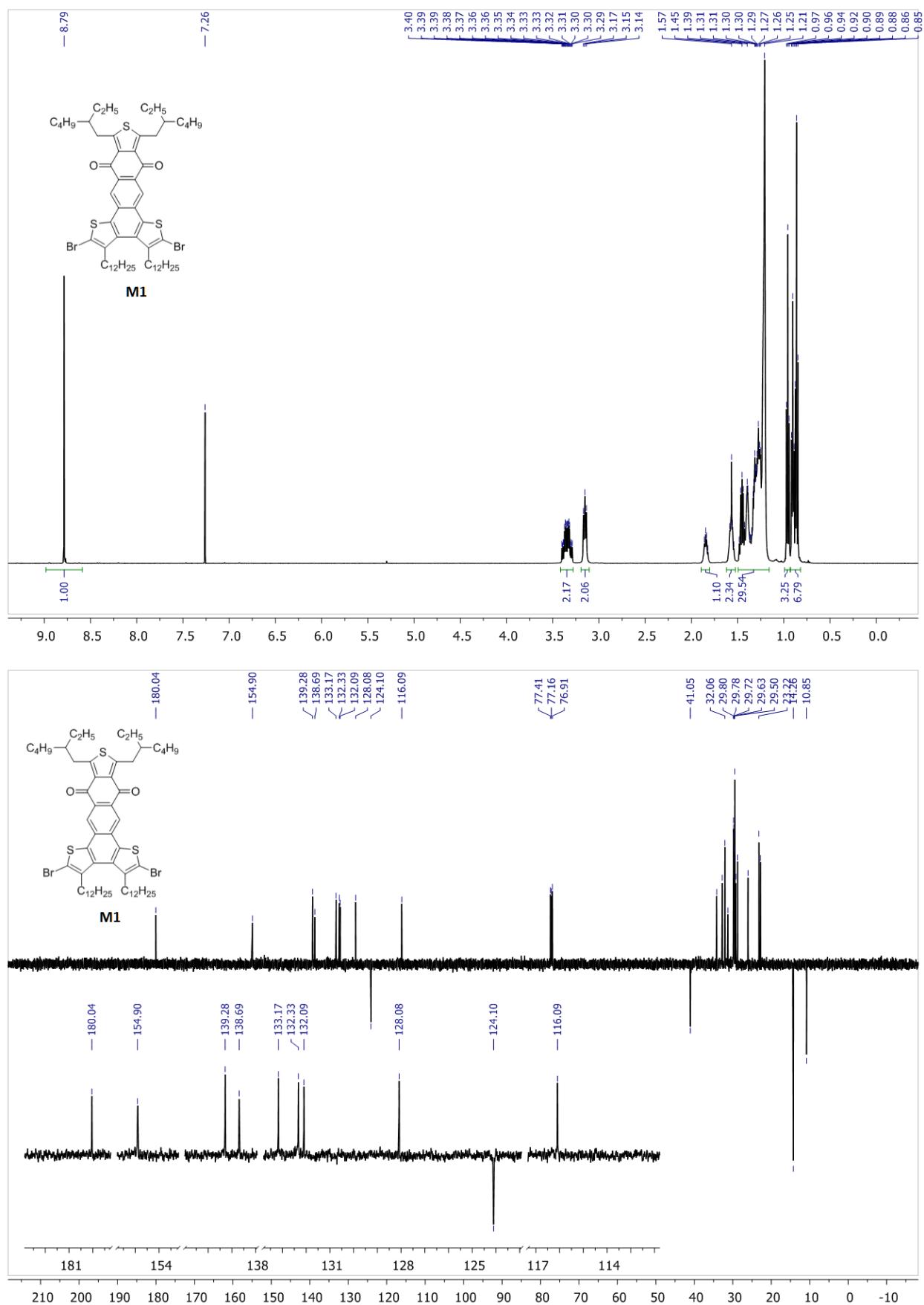


Figure S18 – ^1H and ^{13}C NMR spectra of 2,5-Dibromo-3,4-didodecyl-9,11-bis(2-ethylhexyl)anthra[1,2-*b*:4,3-*b*':6,7-*c*"]trithiophene-8,12-dione (**M1**) in CDCl_3 .

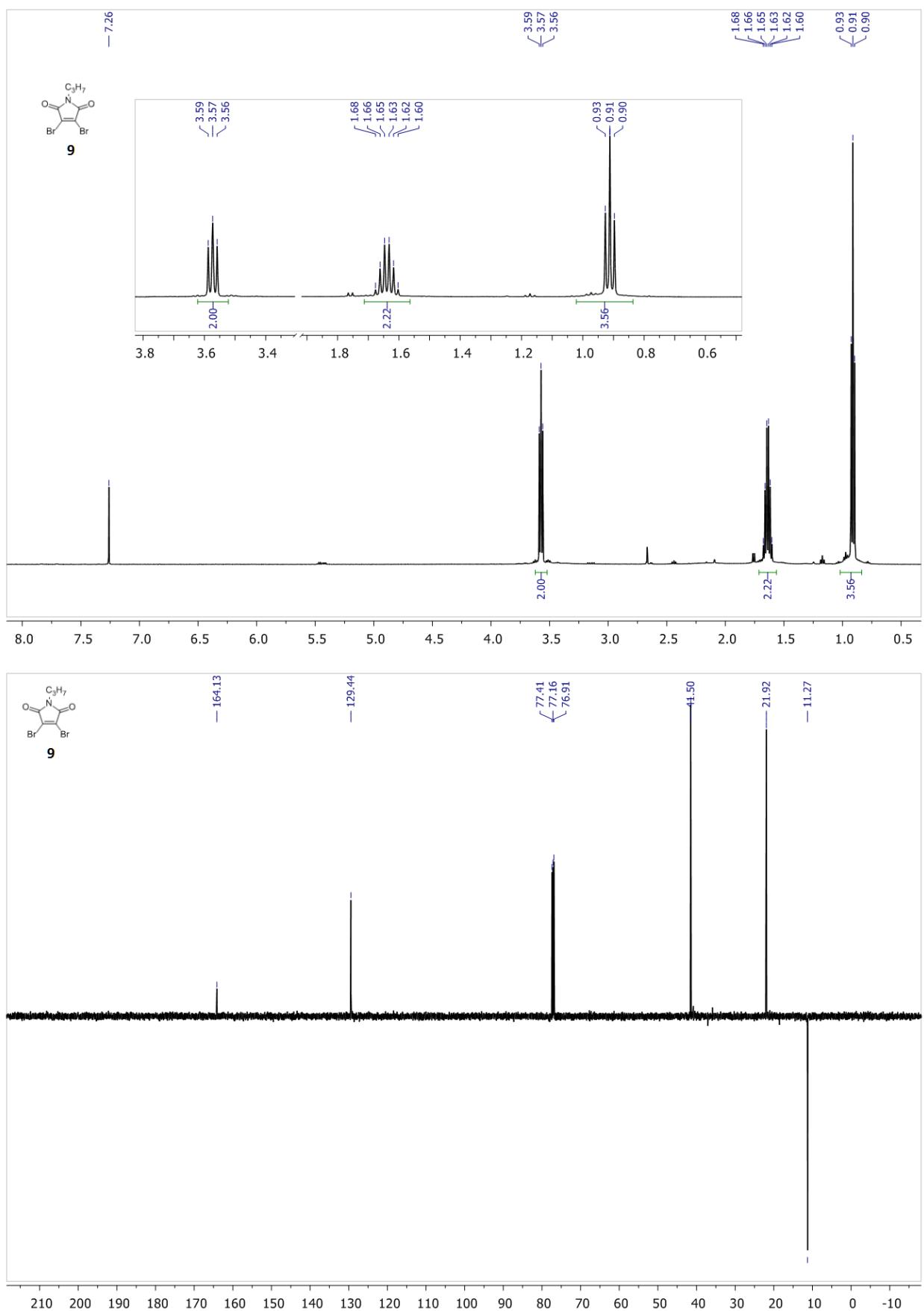


Figure S19 – ^1H and ^{13}C NMR spectra of 3,4-Dibromo-1-propyl-1*H*-pyrrole-2,5-dione (**9**) in CDCl_3 .

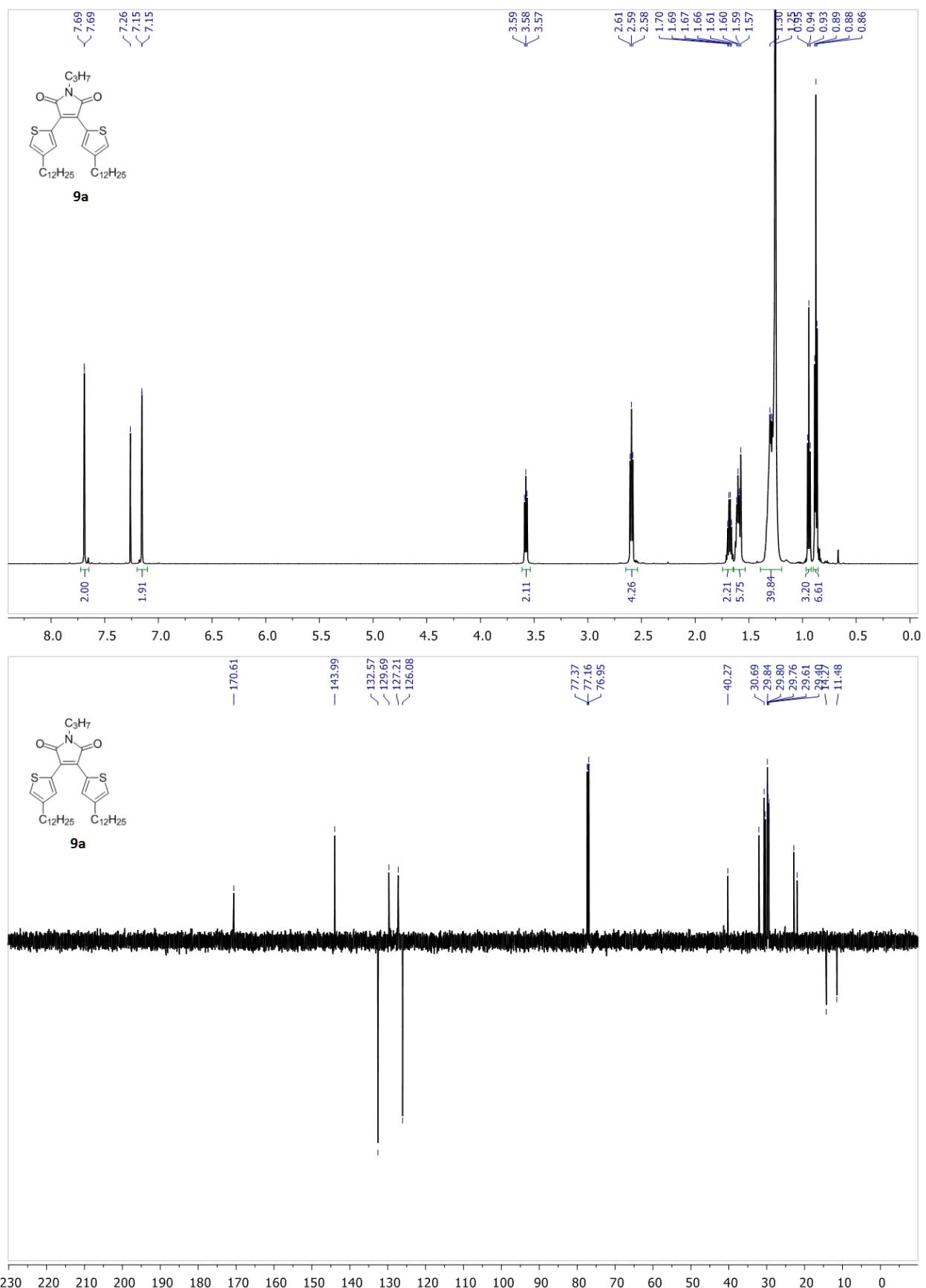


Figure S20 – ^1H and ^{13}C NMR spectra of 3,4-Bis(4-dodecylthiophen-2-yl)-1-propyl-1*H*-pyrrole-2,5-dione (**9'**) in CDCl_3 .

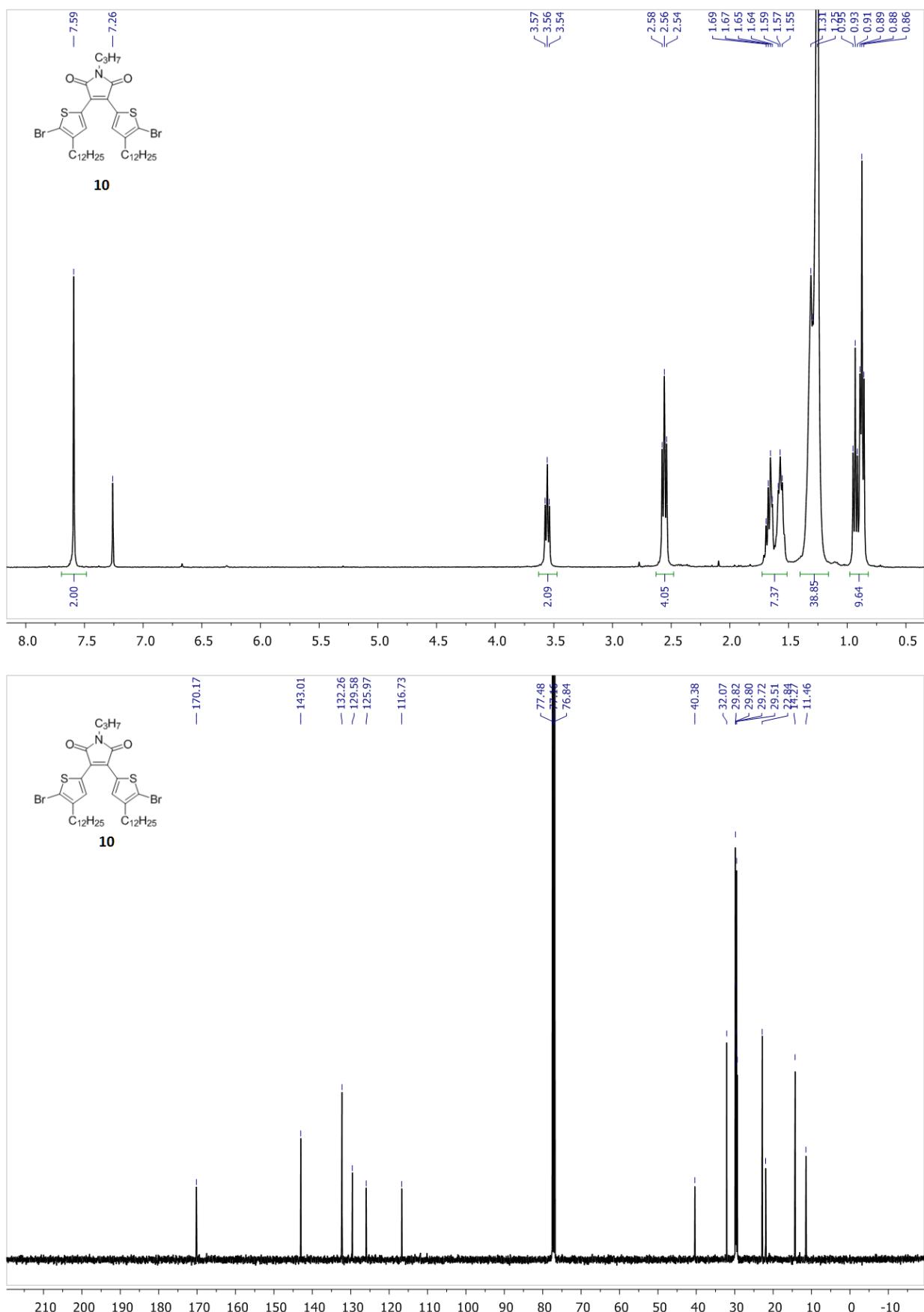


Figure S21 – ^1H and ^{13}C NMR spectra of 3,4-Bis(5-bromo-4-dodecylthiophen-2-yl)-1-propyl-1*H*-pyrrole-2,5-dione (**10**) in CDCl_3 .

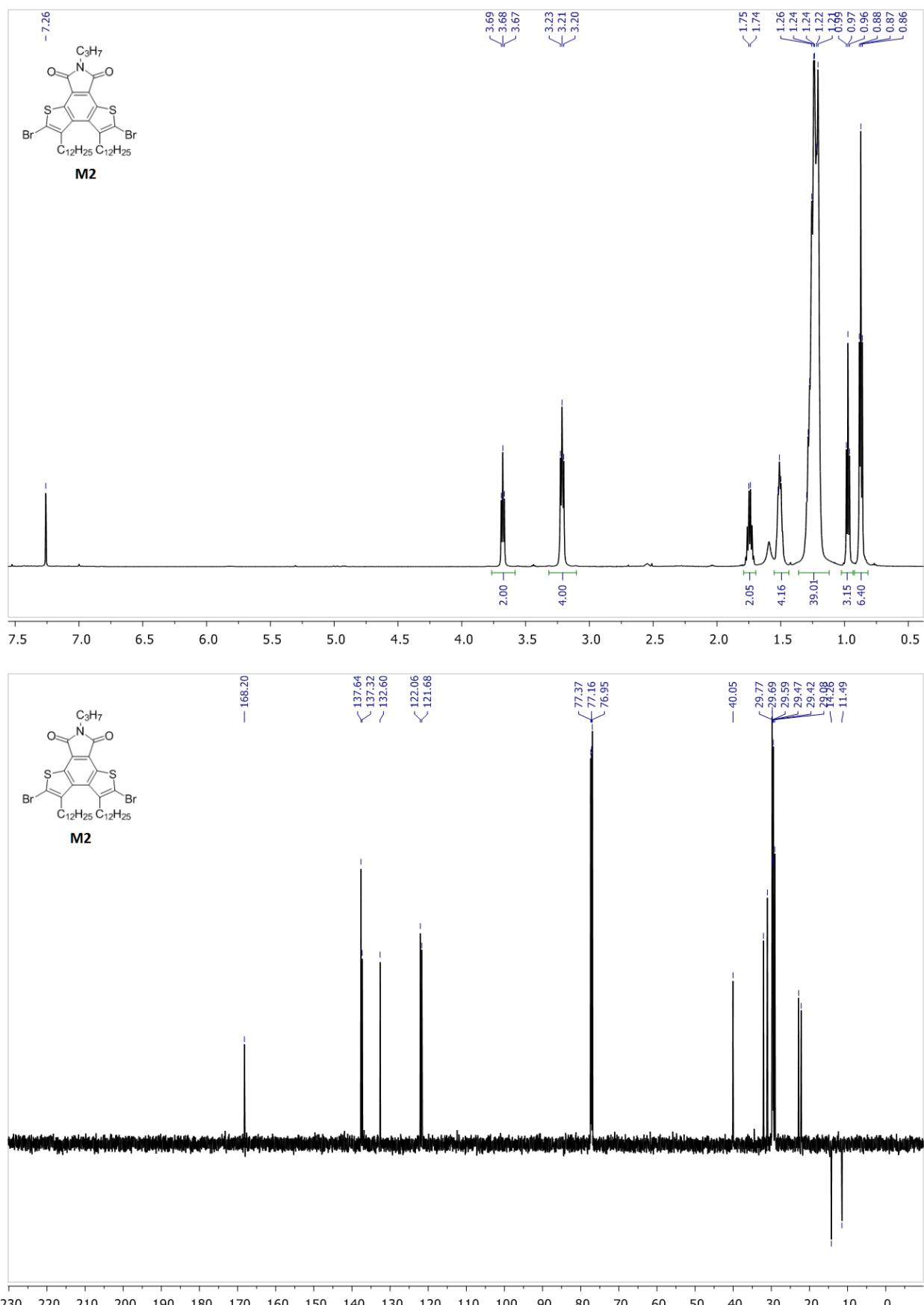


Figure S22 – ^1H and ^{13}C NMR spectra of 2,5-dibromo-3,4-didodecyl-8-propyl-7*H*-dithieno-[2,3-*e*:3',2'-*g*]isoindole-7,9(8*H*)-dione (**M2**) in CDCl_3 .

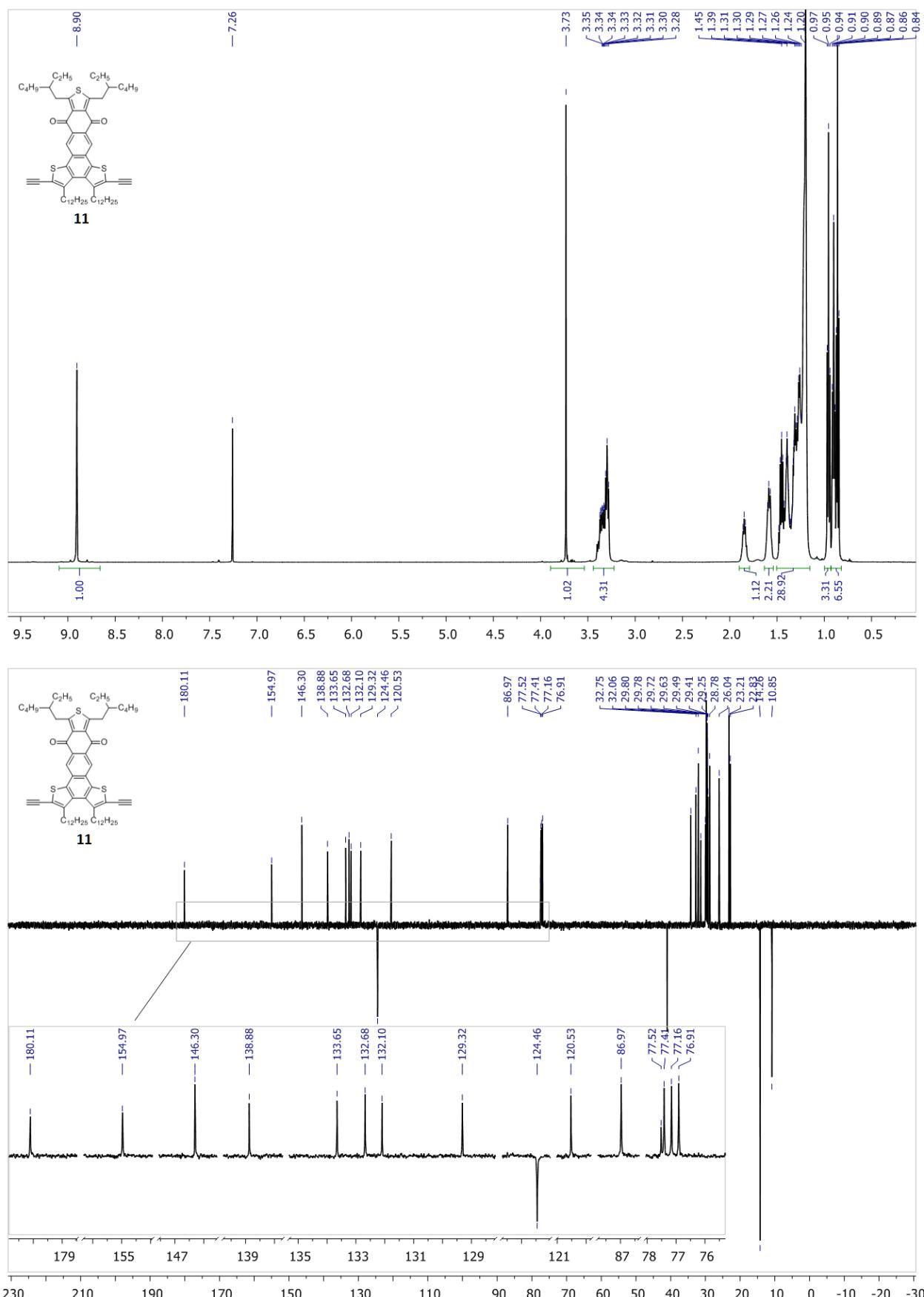


Figure S23 – ^1H and ^{13}C NMR spectra of 3,4-didodecyl-9,11-bis(2-ethylhexyl)-2,5-diethynylanthra[1,2-b:4,3-b':6,7-c'']trithiophene-8,12-dione (**11**) in CDCl_3 .

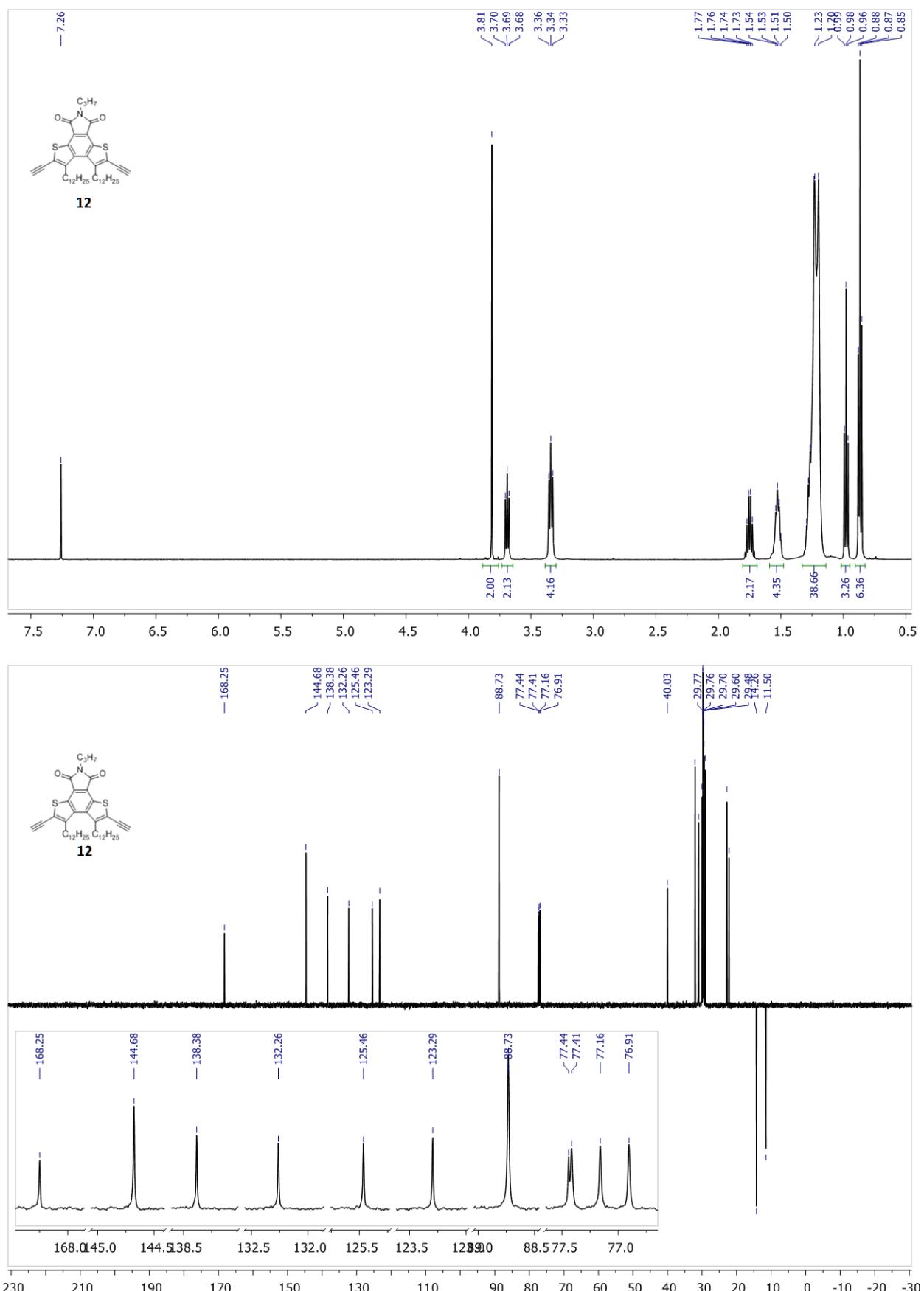


Figure S24 – ^1H and ^{13}C NMR spectra of 3,4-didodecyl-2,5-diethynyl-8-propyl-7*H*-dithieno-[2,3-*e*:3',2'-*g*]isoindole-7,9(8*H*)-dione (**12**) in CDCl_3 .

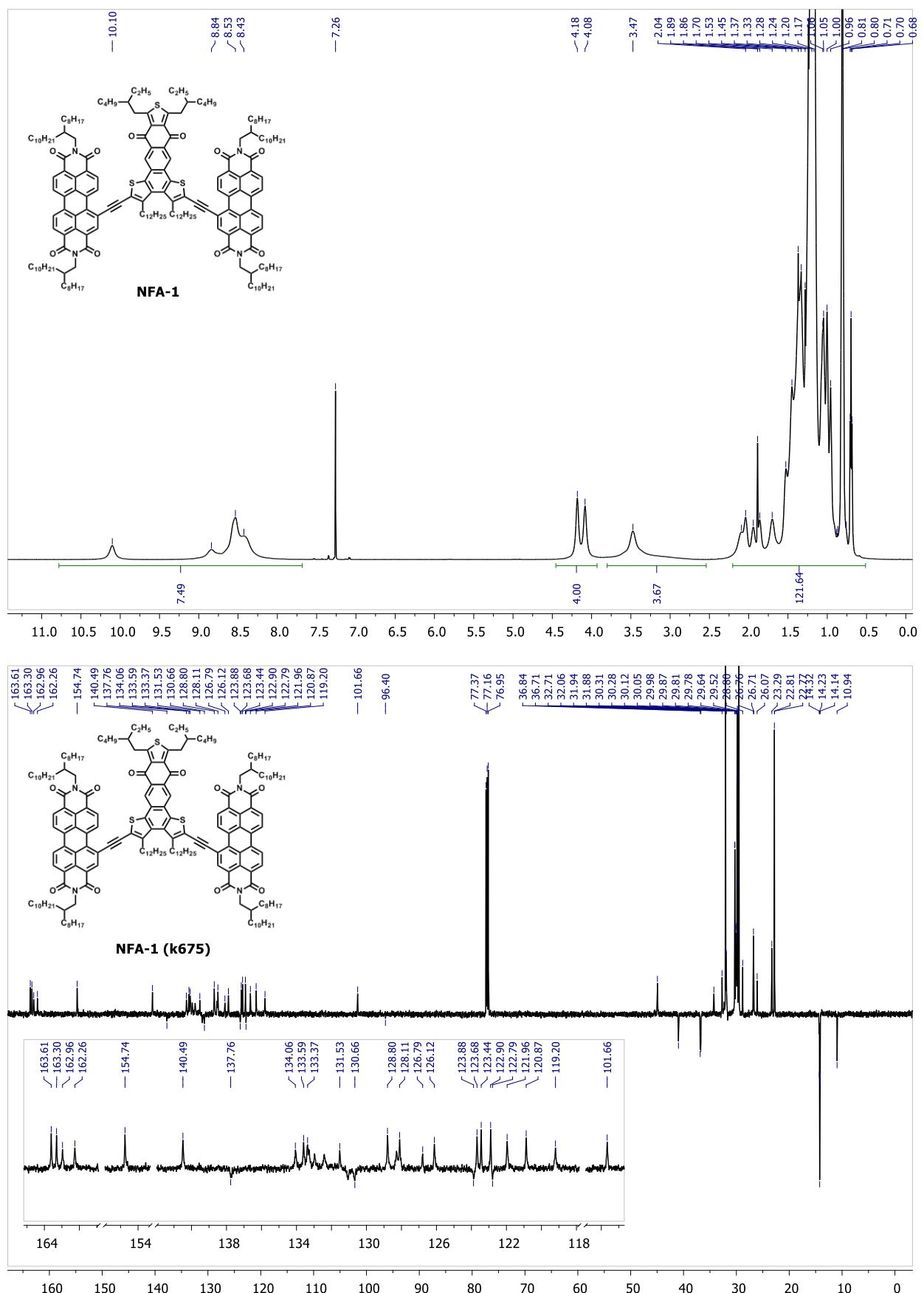


Figure S25 – ^1H and ^{13}C NMR spectra of non-fullerene acceptor **NFA-1** in CDCl_3 .

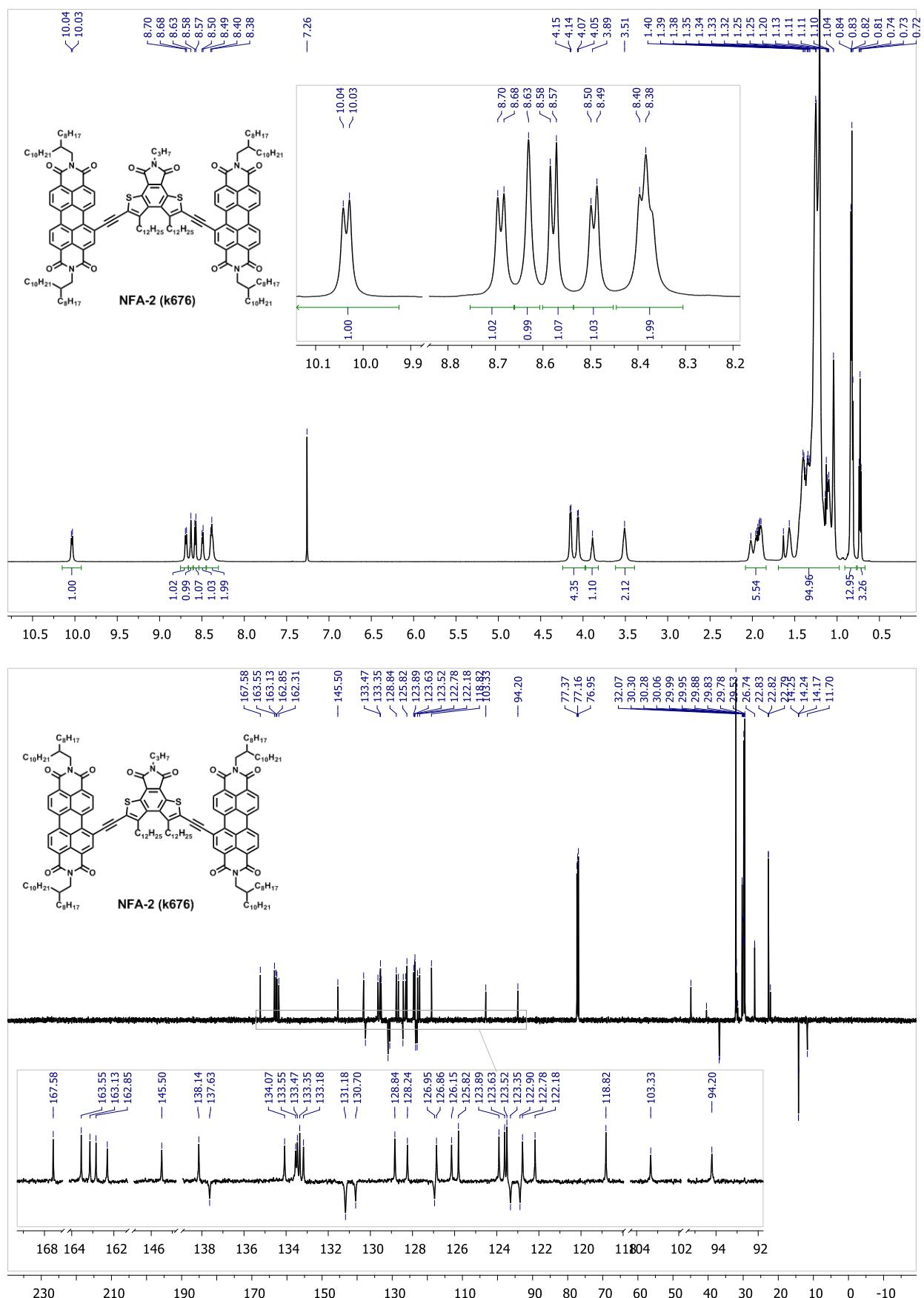


Figure S26 – ^1H and ^{13}C NMR spectra of non-fullerene acceptor **NFA-2** in CDCl_3 .