

Magnetic sorbent modified by humate for the extraction of alkylphenols, bisphenol A and estradiol

Alexander S. Gubin, Pavel T. Sukhanov and Aleksei A. Kushnir

Instruments and reagents. Nonylphenol (technical-grade mixture, HPLC/GC standard, >95% purity, Supelco), 4-octylphenol (>99% purity, Supelco), 17 β -estradiol acetate (>99% purity, Merck), and bisphenol A (analytical standard, 100 mg, Supelco) were used. Fe_3O_4 were synthesized using $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ ($\geq 98.0\%$, Merck), $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ (99.9%, Lenreaktiv, Russia), and $\text{NH}_3 \cdot \text{H}_2\text{O}$ (Lenreaktiv, Russia). Sorbents were synthesized using tetraethyl orthosilicate (TEOS, 99% purity, Acros Organics), sodium citrate (reagent grade, $(\text{C}_6\text{H}_5\text{Na}_3\text{O}_7 \cdot 5.5\text{H}_2\text{O}$, Lenreaktiv, Russia), dimethylformamide (reagent grade, Ekos-1, Russia), and thionyl chloride (at least 99.5% of the main substance, Acros Organics). Desorption was carried out using methanol (99.8%, Lenreaktiv, Russia).

The magnetic sorbent was synthesized using an ES8300 overhead stirrer (EKROSKHIM, Russia). The reaction mixture was heated and cooled using a RE 415 GLCK 1911 thermostat (LAUDA, Germany). Ultrasonic treatment of the reaction mixture was carried out in a Branson B1510 ultrasonic bath. Functional groups on the sorbent surface were identified by IR spectroscopy (InfraLum FT-08, Lumex, Russia). The specific surface area of the sorbent ($S, \text{m}^2 \text{ g}^{-1}$) was determined by BET. The nanoparticle morphology was determined using a JSM-6510LV scanning electron microscope (Jeol, Japan) and a Libra 120 transmission electron microscope (Carl Zeiss, Germany). XRD spectra were obtained on an ARL X'TRA diffractometer (Thermo Scientific, Switzerland). The magnetic characteristics of the nanosorbent were studied using a VSM-7410S magnetometer (Lake Shore, United States). The solution pH was controlled using a pH-150M meter (Akvilon, Russia). The qualitative analysis of the samples was carried out by GC-MS on an Agilent 7890B GC system with an Agilent 5977A MSD mass selective detector.

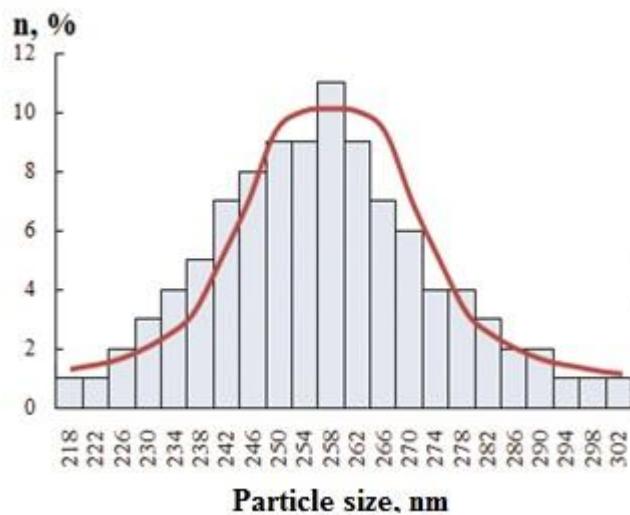


Figure S1. Particle size distribution for the $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$ sorbent.

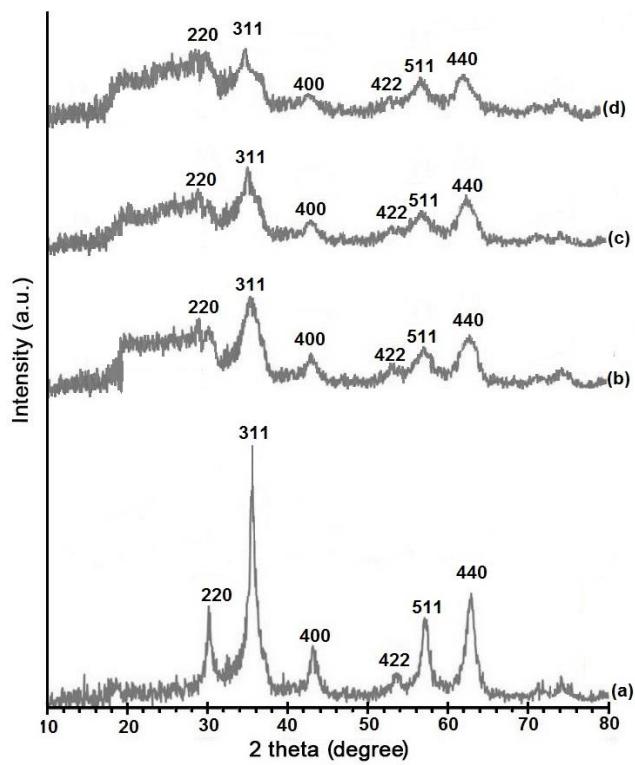


Figure S2. XRD pattern for (a) Fe_3O_4 , (b) $\text{Fe}_3\text{O}_4@\text{SiO}_2$, (c) $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-NH}_2$, and (d) $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$.

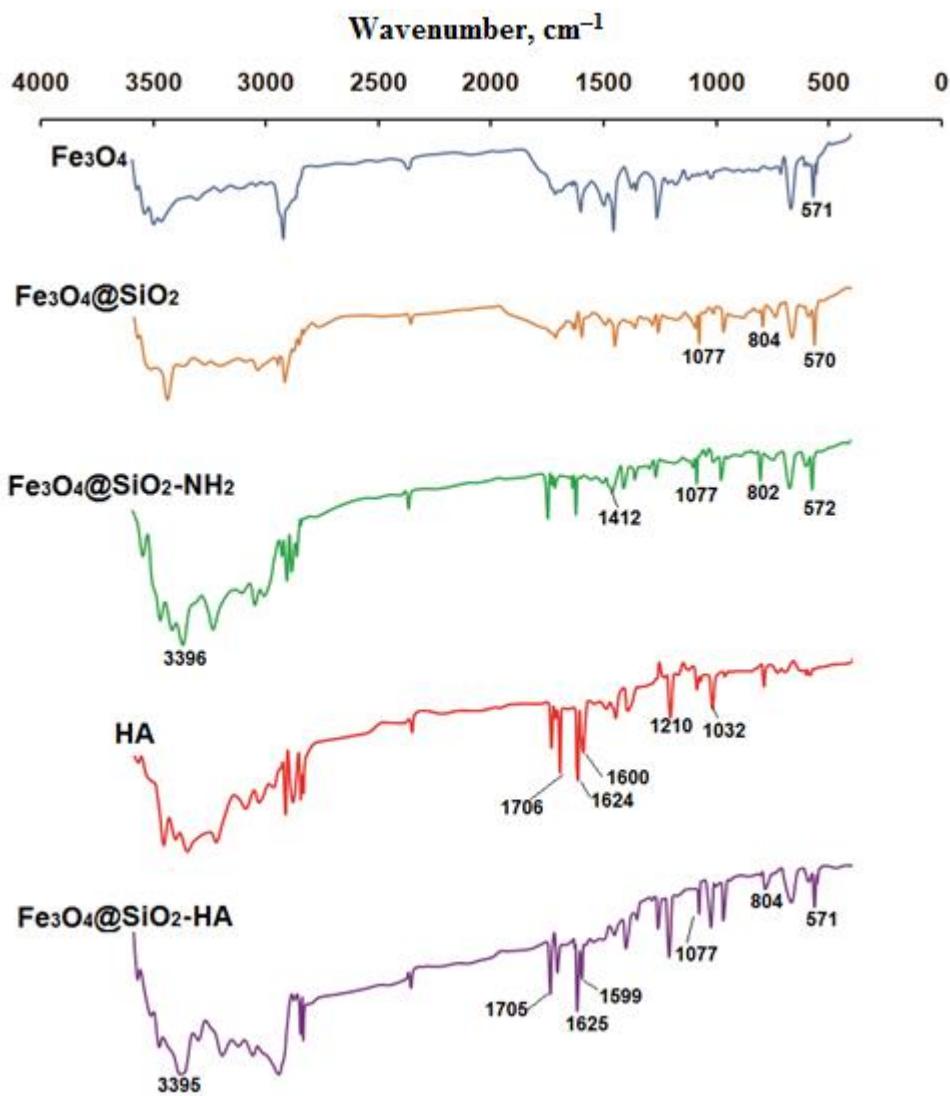


Figure S3. FT-IR spectra for magnetite (Fe₃O₄); silica-coated Fe₃O₄ nanoparticles (Fe₃O₄@SiO₂); silica-coated Fe₃O₄ nanoparticles modified with amino groups (Fe₃O₄@SiO₂-NH₂); free humic acids (HA) and Fe₃O₄ nanoparticles modified with humates (Fe₃O₄@SiO₂-HA).

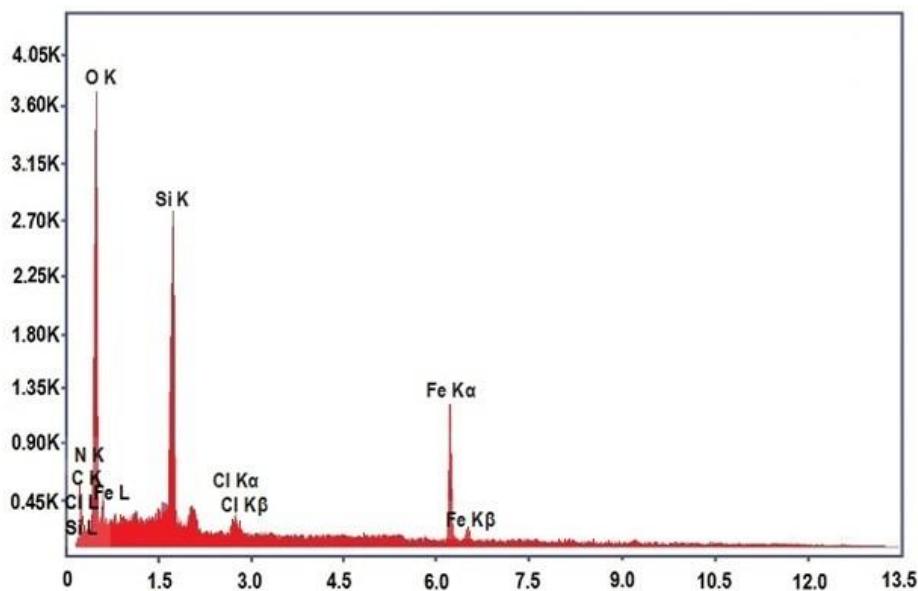


Figure S4. Elemental analysis (EDS spectrum) for the $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$ sorbent

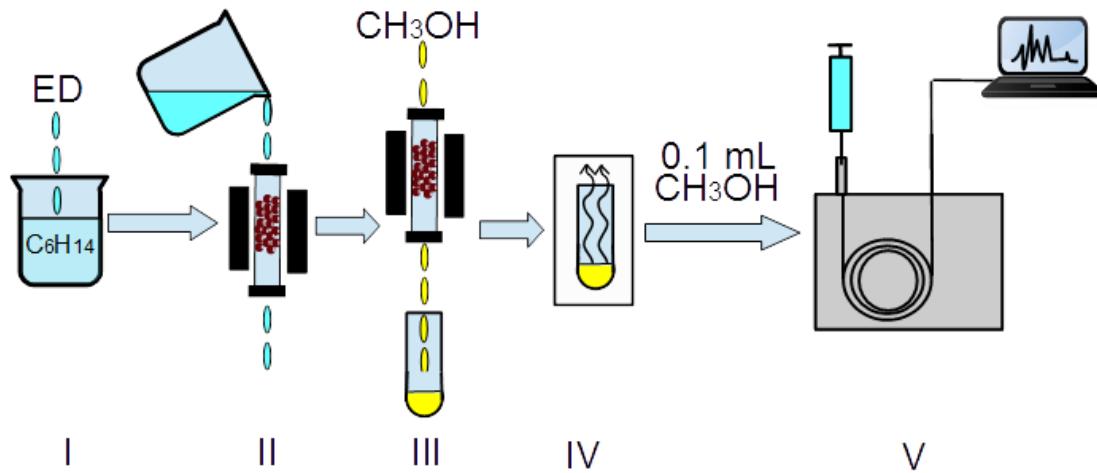


Figure S5. Scheme of enrichment experiment using the $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$ magnetic sorbent: (I) addition of ED to a hexane solution; (II) passing of the hexane solution of ED through a column with $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$; (III) desorption with methanol; (IV) evaporation in the stream of nitrogen; and (V) GC-MS determination of ED.

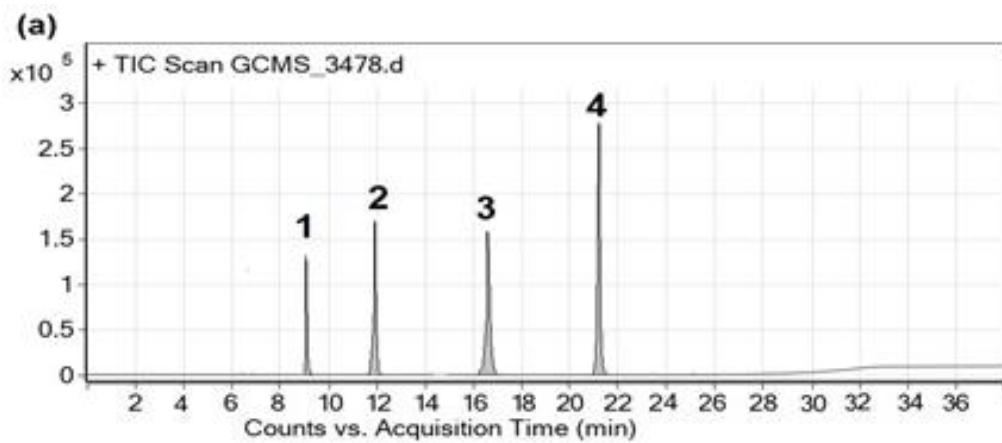


Figure S6. Chromatograms for separation of ED mixtures (the number in parentheses are peak numbers): 4-OP (1), 4-NP (2), BPA (3), and E2 (4). Chromatography conditions: Agilent 7890B GC system with Agilent 5977A MSD; sample injection (1.0 μ L), split ratio 30:1; HP-5MS UI nonpolar column (30 m \times 0.250 mm \times 0.25 μ m); the stationary phase was 5% (phenyl)-methylpolysiloxane; the carrier gas was helium (1.0 mL/min); the injection temperature was 300°C; the MSD temperature was 250°C; temperature programming: the starting temperature 150 °C was kept for 2 min, the temperature was increased at a rate of 10 °C/min to 280 °C and maintained for about 20 min; electron impact with radiation energy of 70 eV.

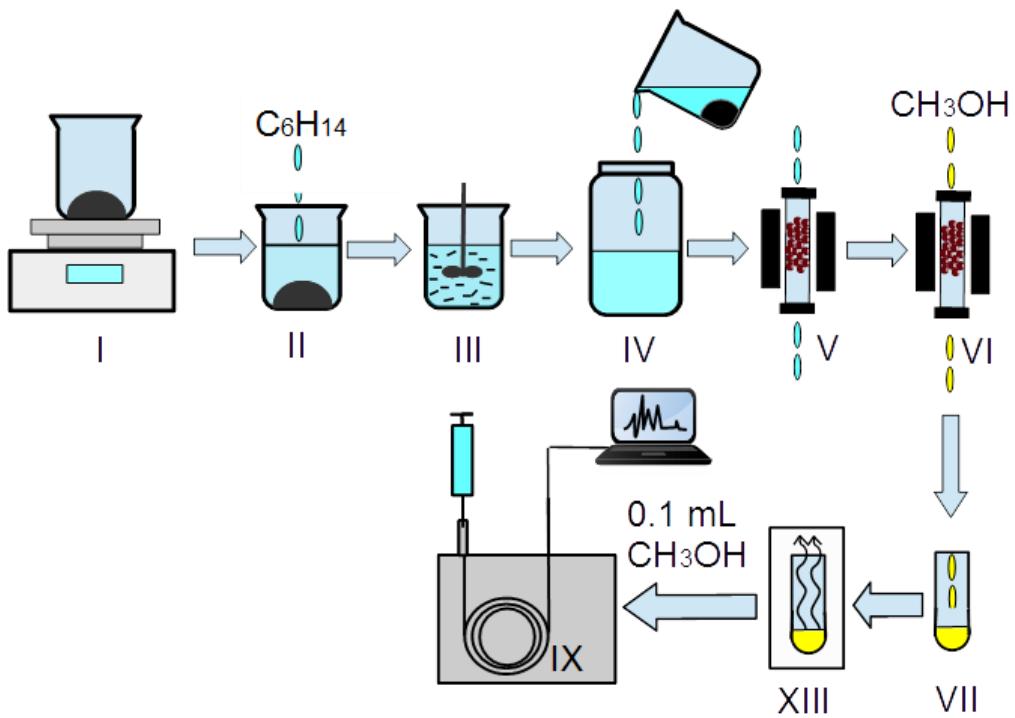


Figure S7. Scheme for analysis of the model sample of bottom sediments: (I) weighing of the sample (100 g); (II) addition of hexane; (III) stirring for 2 h; (IV) separation of bottom sediments from the hexane extract; (V) passing through a column with $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$; (VI) desorption with methanol; (VII) collection of the methanol extract; (VIII) evaporation to 0.1 mL; and (IX) injection to the chromatograph. ED was added after step IV.

Table S1. Analytical performances for the MSPE-GC-MS determination of EDs in bottom sediments after extraction with hexane

Substance	Added, ng/kg	Found, ng/kg	RR ^a , %	Intraday precision ^e , %	Interday precision ^e , %	R ²	LOD ^b , ng/kg	LOQ ^c , ng/kg	Linearity ^d , ng/kg
4-OP	0	-	-	-	-				
	10	8.7	87	8.1	11.0				
	50	45	90	6.2	7.8	0.998	1.0	3.0	3.0-800
	100	94	94	5.1	6.0				
	500	478	96	3.2	4.9				
4-NP	0	-	-	-	-				
	10	8.4	84	7.8	11.6				
	50	46	92	4.9	8.2	0.999	0.9	3.0	3.0-900
	100	95	95	4.3	5.3				
	500	481	97	2.4	3.5				
BPA	0	-	-	-	-				
	10	9.5	95	6.4	9.9				
	50	49	98	5.7	7.8	0.997	1.6	5.0	5.0-500
	100	102	102	4.5	5.1				
	500	525	105	2.1	3.3				
E2	0	-	-	-	-				
	10	8.5	85	9.3	12.5				
	50	43	87	7.8	8.9	0.998	1.8	6.0	6.0-900
	100	90	90	5.3	6.2				
	500	476	95	3.7	5.0				

*) Below limit of detection

^a Relative recovery (n=6). ^b Limit of detection (S/N=3). ^c Limit of quantification (S/N=10). ^d Linearity range (n=6). ^e Relative standard deviation for intraday (n=3) and interday (n=6) precision.

Table S2. Analytical performances for the determination of ED in real bottom sediments (check of trueness by the spiking method)*

Substance	Added, ng/kg	Found, ng/kg	RR, %	Intraday precision, % ^a	Interday precision, % ^a
4-OP	-	287	-	4.0	7.0
	200	449	92	3.2	5.9
4-NP	-	332	-	3.3	6.8
	300	599	95	2.9	5.6
BPA	-	238	-	4.7	6.1
	200	457	104	3.6	4.9
E2	-	100	-	7.0	10.5
	300	370	93	4.7	7.8

*) Samples were analyzed as shown in Fig. S6

^a Relative standard deviation for intraday (n=3) and interday (n=6) precision.

Table S3. Proposed method *vs.* known methods of solid-phase extraction (SPE) and magnetic solid-phase extraction (MSPE) of bisphenol A, 4-octylphenol, 4-nonylphenol, and 17 β -estradiol

Analyte	Sorbent	Analysis method	EF	Sorption capacity, mg g ⁻¹	Ref.
4-OP	$\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-HA}$	MSPE-GC-MS	1550	740	This method
4-NLP			1618	809	
BPA			1782	895	
E2			1815	1022	
BPA	$\text{Fe}@\text{MgAl-LDH}$	SPE-HPLC-VWD	300	–	S1
4-OP			–	–	
4-NP			–	–	
4-OP	Molecularly imprinted polymers based on CdTe/CdS quantum dots, magnetic Fe_3O_4 and graphene oxide	SPE- UPLC	510	–	S2
BPA			–	–	
4-NP	Magnetic Fe_3O_4 dummy molecularly imprinted polymers based on multi-walled carbon nanotubes	MSPE-HPLC-UV	–	31.05	S3
BPA			–	10.6	
BPA	$\text{Fe}_3\text{O}_4@\text{MON-NH}_2$	MSPE-HPLC-UV	197	824.1	S4
4-OP			196	116.6	
4-NP			192	117.9	
BPA	Magnetic Fe_3O_4 molecularly imprinted polymer	SPE-UV	–	40	S5
E2	Magnetic nanoparticles of graphene oxide (GO)/ $\gamma\text{-Fe}_2\text{O}_3$	SPE-HPLC-FD	91	–	S6

References

- S1. Q. Zhou, M. Lei, J. Li, K. Zhao and Y. Liu, *Sep. Purif. Technol.*, 2017, **182**, 78.
- S2. S. Han, X. Li, Y. Wang and S. Chen, *Chem. Eng. J.*, 2015, **271**, 87.
- S3. W. Rao, R. Cai, Y. Yin, F. Long and Z. Zhang, *Talanta*, 2014, **128**, 170.
- S4. Z.-D. Du, Y.-Y. Cui, C.-X. Yang and X.-P. Yan, *Talanta*, 2020, **206**, 120179.
- S5. A. Karrat and A. Amine, *Microchem. J.*, 2021, **168**, 106496.
- S6. F. N. Ferreira, A. P. Benevides, D. V. Cesar, A. S. Luna and J. S. de Gois, *Microchem. J.*, 2020, **57**, 104947.