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According to X-ray diffraction (XRD) analysis, the samples 
were single-phase CuInSe2. No impurity phases and noise signals 
of amorphous phases were found (Figures S2, S3). Electron-
microscopic images of 4 also showed a homogeneous picture with 
no sign of impurities (Figures S8–S10). Chemical analysis 
performed by energy-dispersive X-ray (EDX) spectroscopy 
confirmed the stoichiometry of the nominal composition (Table 
S5). The unit cell parameters a and c and volume V [Figure 1(a),  
Table S1, Figure S4] decreased with the nominal cobalt content, as 
expected due to ionic radii relation (Co2+ with a radius of 0.56 Å 
is smaller than either Cu+ or Ga3+, 0.60 or 0.47 Å, respectively16). 
At the same time, the cell parameters changed only slightly 
comparing with those of parent unquenched samples; that is, 
cobalt was incorporated in the chalcopyrite lattice in quantities 
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Figure 1 (a) Unit cell volume V and (b) paramagnetic cobalt content xP as 
functions of nominal cobalt content x in the synthesized (quenched) samples 
in comparison with those of parent unquenched14 samples.



Mendeleev Commun., 2023, 33, 267–268

–  268  –

close to those in unquenched samples, whereas magnetic properties 
changed drastically.

The isothermal magnetization–magnetic field M(H) curves 
show a hysteretic behavior with a linear part [Figures 2(a), S5]. 
The subtraction of linear parts gave nearly identical hysteresis 
loops at T = 35 and 300 K [Figures 2(b), S5] with saturation 
magnetization MS of about 900 emu mol–1 per cobalt for 5 and 
coercive fields of 140 and 83 Oe at 35 and 300 K, respectively 
(see Online Supplementary Materials, Table S2).

Thus, all the samples demonstrated ferromagnetic behavior 
and MS increased with the cobalt content; they were characterized 
by a coercive field of about 100–200 Oe even at room temperature 
(Figures 3, S6).

At the same time, the magnetic behavior of the samples was more 
complicated. The M(H) curves were a combination of a temperature-
independent ferromagnetic signal and constant field-independent 
paramagnetic-like magnetic susceptibility cFIP, which manifested 
itself as a linear part of M(H) (at T = 35 and 300 K; at 2 K, this linear 
part was curved apparently according to the Brillouin function). Note 
that this value of cFIP does not obey the Curie–Weiss law (values at 
35 and 300 K are much closer to each other than they should be).

The cT(T) curves for all the samples (Figure S7) demonstrated a 
strong linear dependence that means the presence of a temperature-
independent contibution to the magnetic susceptibility cTIP, most (but 
not all) of which is related to ferromagnetic constant magnetization.
The remaining part of cTIP is temperature and magnetic field-
independent susceptibility cconst. After subtracting constant cTIP from 
cT(T), the remaining magnetic susceptibility cpara obeyed the Curie–

Weiss law (Figure S7, Table S3). Therefore, the magnetic properties 
include  (1) an almost temperature-independent ferromagnetic part 
that  increases with the cobalt content [hysteresis on  M(H) 
dependences with pretty fast saturation; the main contribution to the 
temperature-independent part of the magnetic susceptibility  cTIP, 
observed on the cT(T) dependence];  (2) constant magnetic 
susceptibility cconst  that does not depend on both temperature and 
magnetic field [part of cFIP and cTIP, is very close in all the samples if 
calculated per mole of cobalt and amounts to about 0.0038 cm3 mol–1 
(Table S3), and could be for example related to magnetism of free 
charge carriers]; and (3) a conventional paramagnetic part cpara that 
obeys the Curie–Weiss law [part of cFIP, temperature-dependent part 
of c(T)]. Most likely, this cpara is caused by cobalt atoms incorporated 
in a chalcopyrite lattice. This paramagnetic cobalt content xP was 
calculated from the Curie–Weiss law [Figure 1(b), Table S4]. As can 
be seen, this xP content is similar for quenched and unquenched 
samples (slightly higher in the quenched samples) and also correlates 
with similar unit cell volumes [Figure 1(a)]. 

Thus, quenching caused the emergence of ferromagnetism in 
cobalt-doped CuInSe2 although the quantity of cobalt atoms 
incorporated in a chalcopyrite cell increased only slightly. It 
cannot be completely ruled out that this ferromagnetism was 
caused by a cobalt-containing impurity (but at least not CoSe2 or 
Co3Se4 found in the unquenched samples without any 
ferromagnetic signal). Ferromagnetism persisted even at room 
temperature with a coercivity of 140 Oe.
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Figure  2  (a) Isothermal magnetization curves measured at temperatures  
T = 2, 35, and 300 K and (b) ‘ferromagnetic’ isothermal magnetization 
curves for T = 35 and 300 K obtained by the subtraction of linear parts from 
measured curves (see the text) for 5. 

Figure  3  M(H) hysteresis loops at T = 300 K for Cu1 – x/2In1 – x/2CoxSe2;  
x = 0.06 (2), 0.08 (3), 0.1 (4), and 0.2 (5). 




