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(CF3)2CHOH (hexaflouorispopropanol) provided the desired 
product 3a with excellent conversion (entry 7, 93%). No reaction 
was observed in the absence of any catalyst (entry 8). Switching 
the [Cp*Co(CO)I2] catalyst to [Cp*CoI2]2 or [Cp*CoCl2]2 led to 
low yields of 3a (entries 9,10). A moderate yield was obtained in 
the absence of AcONa (entry 11, 75%). Use of AcOK or Na2CO3 
instead of AcONa as additives reduced the yield of product 3a 
(entries 12,13). Lowering the temperature to 60 ºC gave 3a in 
only 63% yield, whereas increasing the temperature to 100 ºC 
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Scheme  1  Reagents and optimized conditions: i, oxime 1 or 4 (0.2 mmol), 
alkyne 2 (0.24 mmol), [Cp*Co(CO)I2] (10 mol%), AcONa (20 mol%), 
betaine / (CF3)2CHOH (1 : 2, mol / mol, 1 ml), 80 ºC, 12 h, isolated yields.
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had no more benefit to the reaction (entries 14,15). Furthermore, 
with lower catalyst loading the yields dropped to 70% (entry 7). 
The model reaction was also performed in pure (CF3)2CHOH 
when a lower conversion of the starting material was observed 
(entry 16). It was worth noting that no expensive silver salt (for 
example AgSbF6) that is usually employed in other C-H 
activation reactions24 was required in the present protocol.

With the optimized reaction conditions in hand, the scope of 
oxime was then explored (see Scheme 1).† The annulation of 
various acetophenone oximes 1a-e and diphenylacetylene 2 
proceeded efficiently to provide the desired isoquinolines 3a-e 
in good to excellent yields. Both electron-withdrawing and 
electron-donating groups were well tolerated. Substituent on the 
ortho position allowed the C-H activation to occur on the less 
hindered position (product 3f). Other ketoximes such as (E)-1-
phenyl-propan-1-one oxime 1g, benzophenone oxime 1h and 
(E)-1-(naphthalen-1-yl)ethan-1-one oxime 4a also showed good 
reactivities to afford the desired products 3g,h and 5a. In 
addition, heterocyclic ketoxime 4b also reacted smoothly to give 
product 5b in 75% yield. Subsequently, two diaryl diynes 6a,b 
were explored, and regioisomeric mixtures of the products were 
obtained. Compounds 7a and 7b were found as the major 
products and were isolated in moderate yields (68 and 64%, 
respectively). When aliphatic alkynes or unsymmetrical alkynes 
were tested, complex mixtures were formed.

One of the main advantages of the DESs use as solvents lies 
in that DESs enable recycling of transition metal catalysts.36,37 

Once the reaction was finished, the organic compounds were 
extracted, and the DES [betaine / (CF3)2CHOH] was dried under 
vacuum. A new batch of fresh starting materials and NaOAc 
were then added to the recovered DES without the addition of 
more Co catalyst. The process could be repeated up to three 
consecutive cycles with slight loss in the yield (93, 90 and 85%, 
respectively). However, the yield dropped down to 62% after the 
fourth cycle. It was assumed that the presence of noticeable 
amounts of different salts may influence the intrinsic structure of 
DES, or essentially volatile (CF3)2CHOH could be partially 
evaporated despite its hydrogen bonding to the betaine.

Since this kind of annulation was well established,23-25 we 
propose the following mechanism (Scheme 3). Initially, 
[Cp*Co(CO)I2] readily undergoes decarbonylation in the 
presence of NaOAc to afford species [Cp*Co(OAc)2]. 
Coordination of oxime 1 followed by cyclometallation-
deprotonation provides intermediate A. Subsequently, 
coordination of alkyne (species  B) followed by migratory 
insertion of an alkyne gives C. Finally, reductive elimination 
followed by protodemetallation affords product 3 and meanwhile 
regenerates the catalytically active species.

In summary, a cobalt-catalyzed redox-neutral [4  +  2] 
annulation of oximes and alkynes in deep eutectic solvent has 
been developed. The reactions proceed smoothly to give 
isoquinolines in moderate to excellent yields. No external 
oxidizing reagent is required, and water is released as the only 
secondary product. The DES consisting of betaine and 
hexafluoroisopropanol is readily available and cost effective. 
Moreover, the catalyst and the solvent can be used for three 
consecutive cycles.
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Scheme  2  Reagents and optimized conditions: i, oxime 1a (0.2 mmol), 
diyne 6a,b (0.24 mmol), [Cp*Co(CO)I2] (10 mol%), AcONa (20 mol%), 
betaine / (CF3)2CHOH (1 : 2, mol / mol, 1 ml), 80 ºC, 12 h, isolated yields.
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Table  1  Optimization of reaction conditions.a

Entry [Co] Solventb Additive T / ºC
Yield of 
3a (%)c

  1 [Cp*Co(CO)I2] TBAB / HO(CH2)2OH AcONa   80   0
  2 [Cp*Co(CO)I2] ChCl / urea AcONa   80 10
  3 [Cp*Co(CO)I2] ChCl / HO(CH2)2OH AcONa   80 31
  4 [Cp*Co(CO)I2] ChCl / glycerol AcONa   80 45
  5 [Cp*Co(CO)I2] ChCl / MeC(O)NH2 AcONa   80 73
  6 [Cp*Co(CO)I2] betaine / lactic acid AcONa   80 17
  7 [Cp*Co(CO)I2] betaine / (CF3)2CHOH AcONa   80 93 (70d)
  8 none betaine / (CF3)2CHOH AcONa   80   0
  9 [Cp*CoI2]2 betaine / (CF3)2CHOH AcONa   80 36
10 [Cp*CoCl2]2 betaine / (CF3)2CHOH AcONa   80 29
11 [Cp*Co(CO)I2] betaine / (CF3)2CHOH none   80 75
12 [Cp*Co(CO)I2] betaine / (CF3)2CHOH AcOK   80 80
13 [Cp*Co(CO)I2] betaine / (CF3)2CHOH Na2CO3   80 65
14 [Cp*Co(CO)I2] betaine / (CF3)2CHOH AcONa   60 63
15 [Cp*Co(CO)I2] betaine / (CF3)2CHOH AcONa 100 85
16 [Cp*Co(CO)I2] (CF3)2CHOH AcONa   80 62
a Reaction conditions: oxime 1a (0.2 mmol), alkyne 2 (0.24 mmol), 
Co  catalyst (10 mol%), additive (20 mol%), DES (1 ml), heating, 12 h. 
b TBAB stands for tetrabutylammonium bromide, ChCl stands for choline 
chloride, the betaine stands for Me3N+CH2CO2

-; except for entry 16, ratios 
of ammonium / hydrogen donor components are 1 : 2. c Isolated yield. d With 
5 mol% of [Co].
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