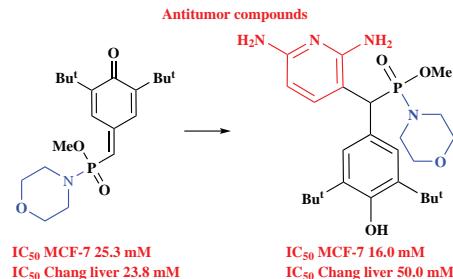


Synthesis of new *p*-quinone methide containing morpholine fragment: access to (diarylmethyl)phosphonamides with antitumor activity

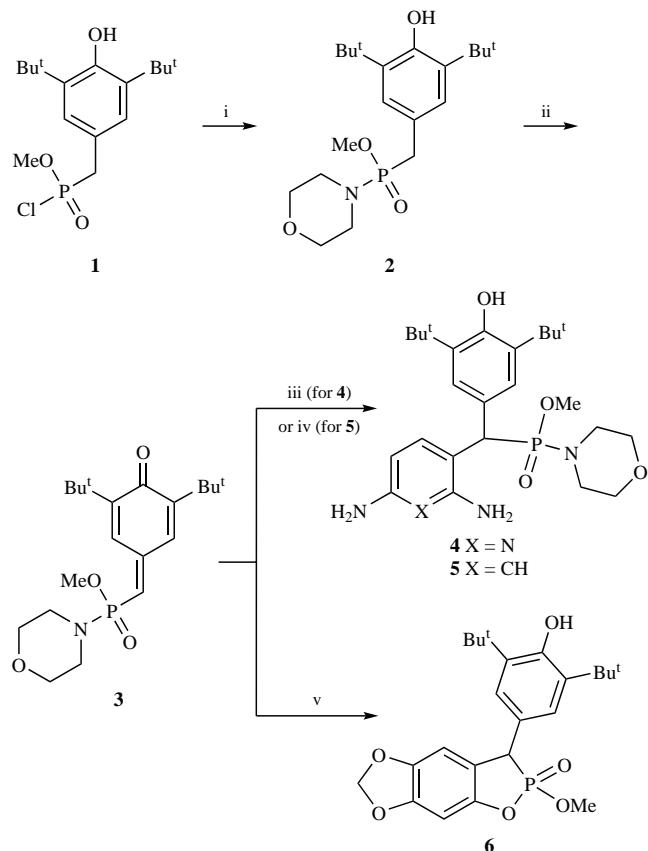

Elmira M. Gibadullina,^{*a} Tran H. B. Nguyen,^b Thu T. Nguyen,^b Anna G. Strelnik,^a Alexandra D. Voloshina,^a Anna P. Lyubina,^a Sumbel K. Amerhanova^a and Alexander R. Burilov^a

^a A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, 420088 Kazan, Russian Federation. E-mail: elmirak_1978@mail.ru

^b Kazan National Research Technological University, 420015 Kazan, Russian Federation

DOI: 10.1016/j.mencom.2023.02.027

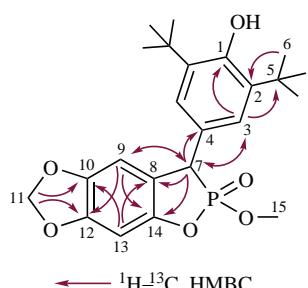
Novel (diarylmethyl)phosphonamides containing 2,6-di-*tert*-butylphenol and heterocycle moieties were synthesized by 1,6-conjugate addition of phosphorylated *p*-quinone methide with morpholine fragment to 2,6-diaminopyridine or 1,3-diaminobenzene. In the case of an acid-catalyzed reaction of *p*-quinone methide with sesamol, morpholine was cleaved to form 1,2-benzoxaphosphole substituent. Cytotoxic effects of starting compounds and obtained products were evaluated towards human cancer and normal cells.


Keywords: phosphonamides, *p*-quinone methides, 1,6-conjugate addition, (diarylmethyl)phosphonamides, 1,2-benzoxaphospholes, cytotoxicity, antitumour activity.

Cancer is an international problem since GLOBOCAN estimated that about 19.3 million new cases of cancer have been registered in 2020.¹ Therefore, the search for new compounds with antitumor activity is an important area of research. In the last few years, *p*-quinone methides have become valuable building blocks for the synthesis of a variety of functionalized molecules.^{2–4} 1,6-Conjugate addition of these molecules with a range of carbon- and heteroatom-centered nucleophiles have become important in furnishing diverse scaffolds containing diarylmethane unit.^{4–8} Since *p*-quinone methides with 2,6- positioned bulky *tert*-butyl groups are more accessible and more stable, the literature presents works mainly based on them.² It should be noted that compounds synthesized on their basis are in turn the derivatives of sterically hindered phenols (SHP) which belong to a family of phenolic antioxidants.⁹ Compounds containing SHP moieties are known to exhibit anti-tumor activity.^{10–14} The stability of the quinonoid form is strongly influenced by the presence of electron-withdrawing groups in the *para* position.^{15,16} In this regard, derivatives of *p*-quinone methides containing a phosphoryl fragment are promising in the synthesis of (diarylmethyl)phosphonates.^{17,18} Among organophosphorus compounds, phosphamides and phosphonamides have recently been used as modifiers for accessing compounds with anticancer potential.^{19,20} These compounds can bind to DNA, RNA and some proteins including enzymes.^{19–22} The geometry of phosphonamides, in which the nitrogen atom is bonded to phosphorus(V), is tetrahedral, making the P-stereogenic center that has a key effect on their properties.²³ Meanwhile, heterocyclic motif is frequently encountered in the structures of approved anticancer drugs,^{24,25} with morpholine being one of the most common structural fragments.^{26,27} The presence of a morpholine fragment at the phosphorus atom can improve the pharmacokinetic properties of the obtained

compounds.²⁷ The high biological activity of morpholine as a scaffold in medicinal chemistry allowed us to choose it as an additional fragment for introduction into SHP molecules.

Previously, we proposed a method for the synthesis of (diarylmethyl)phosphonates exhibiting high antitumor activity, based on the reaction of C-arylation of 2,6-diaminopyridine with dialkyl/diphenyl (3,5-di-*tert*-butyl-4-oxocyclohexa-2,5-dienylidene)methylphosphonates.¹⁸ This method is suitable for the design of molecules containing a diarylmethane stereocenter; in addition, the presence of terminal amino groups opens opportunities for subsequent modification. In this study, we propose to produce *p*-quinone methides containing a phosphonamide fragment and to determine the possibility of their use for the design of new (diarylmethyl)phosphonamides. Our approach (Scheme 1) includes initial synthesis of *O*-methyl (3,5-di-*tert*-butyl-4-hydroxybenzyl)phosphonochloride **1** and its reaction with two equivalents of morpholine in 1,4-dioxane at room temperature to form the corresponding phosphonamide **2**. The following oxidation of compound **2** with potassium hexacyanoferrate affords novel *p*-quinone methide **3** containing methoxy and morpholine groups at the phosphorus atom. The ³¹P NMR spectra contain signals at 31.12 ppm for compound **2** and at 17.76 ppm for **3**. The change in chemical shifts of the protons of the methanetriyl group and the SHP fragment in the ¹H NMR spectra proves that the oxidation of compound **2** proceeded completely with the formation of *p*-quinone methides **3** (for details, see Online Supplementary Materials).


p-Quinone methide **3** was reacted with 2,6-diaminopyridine or 1,3-diaminobenzene in 1,4-dioxane at room temperature to form 1,6-addition products of mono- and diarylphosphonamides. Using column chromatography, it was possible to isolate the C-arylation products **4** or **5**, respectively, with ~60%

Scheme 1 Reagents and conditions: i, morpholine, 1,4-dioxane, argon; ii, $K_3[Fe(CN)_6]$, 2N KOH, PhH, room temperature; iii, 2,6-diaminopyridine, 1,4-dioxane, room temperature (for 4); iv, 1,3-(H₂N)₂C₆H₄, 1,4-dioxane, room temperature (for 5); v, sesamol (1,3-benzodioxol-5-ol), CF₃SO₃H, CH₂Cl₂, room temperature.

yields. Both compounds **4,5** have two chiral centers at the carbon atom of the methanetriyl group and at the phosphorus atom. Analysis of the ¹H, ¹³C, and ³¹P NMR spectra showed that they were formed as diastereomer mixtures.

We employed sesamol (1,3-benzodioxol-5-ol) in the reaction with *p*-quinone methide **3** to find out the possibility of forming phosphonamides containing a diarylmethane scaffold (see Scheme 1). The reaction resulted in the displacement of the morpholine fragment to afford a polycyclic product **6**. ³¹P NMR spectrum of the reaction mixture contained a signal at 46.65 ppm, which should correspond to 1,2-benzoxaphospholes.^{28,29} 2-D Correlation NMR spectroscopy experiments (¹H–¹H COSY, ¹H–¹³C HSQC, ¹H–¹³C HMBC) truly confirm the structure of **6**. The ¹H–¹³C HMBC spectrum (Figure 1) contained cross peaks between the methanetriyl group proton H⁷ at the phosphorus atom and C^{3,4,8,9,14} carbon atoms as well as the H³ proton and C^{1,5} carbon atoms. This would suggest the formation of a cyclic structure (see also Online Supplementary Materials).

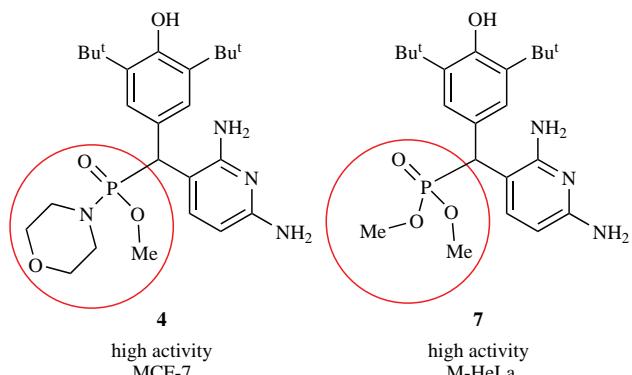


Figure 1 Key cross-peaks in the ¹H–¹³C HMBC spectra of compound **6**.

Table 1 Cytotoxic effects IC₅₀ of test compounds on the cancer and normal human cell lines.^a

Compound	IC ₅₀ (μM)		
	Cancer cell lines		Normal cell line
	M-HeLa	MCF-7	Chang liver
2	>100	81.0 ± 6.4	>100
3	53.5 ± 4.2	25.3 ± 1.9	23.8 ± 1.8
4	27.2 ± 2.1	16.0 ± 1.2	50.0 ± 3.9
5	76.8 ± 5.9	84.8 ± 6.7	73.9 ± 5.8
7^b	16.1 ± 1.3	31.0 ± 2.6	>100
Tamoxifen	28.0 ± 2.5	25.0 ± 2.2	46.2 ± 3.5

^a The experiments were repeated three times. The results are expressed as the mean ± standard deviation. ^b Ref. 18.

Compounds **2–5** were tested for cytotoxicity against human normal and cancer cell lines at concentrations of 1–100 μM (Table 1). The effects were estimated with the use of the multifunctional Cytell Cell Imaging system (GE Health Care Life Science, Sweden) using the Cell Viability Bio App which precisely counts the number of cells and evaluates their viability by detecting fluorescence intensity.³⁰ The starting compound **2** did not show antitumor activity while quinone **3** exhibited cytotoxicity against MCF-7 (the human breast adenocarcinoma) cell line as well as against normal cell line. The 2,6-diaminopyridine derivative **4** containing morpholine and methoxy substituents has *ca.* twofold higher cytotoxicity towards the MCF-7 cancer cell line than its structural analogue **7** with two methoxy substituents¹⁸ and more toxic to the normal Chang liver line. Compound **5** bearing a 1,3-diaminobenzene moiety showed no cytotoxicity.

In summary, compound **4** demonstrated cytotoxicity to MCF-7 (IC₅₀ 16.0 μM), which is 1.5-fold higher than the activity of the antitumour drug Tamoxifen. The present study strongly suggests that *p*-quinone methide containing a morpholine fragment is a promising scaffold for the design of potent anticancer drugs.

This work was carried out with the financial support of the Russian Science Foundation and the Cabinet of Ministers of the Republic of Tatarstan within the framework of the scientific project no. 22-23-20015, <https://rscf.ru/en/project/22-23-20015>.

The authors are grateful to the Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS for technical assistance in research.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.02.027.

References

- H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal and F. Bray, *Ca-Cancer J. Clin.*, 2021, **71**, 209.
- C. G. S. Lima, F. P. Pauli, D. C. S. Costa, A. S. de Souza, L. S. M. Forezi, V. F. Ferreira and F. C. Silva, *Eur. J. Org. Chem.*, 2020, 2650.
- A. Eitzinger, M. Winter, J. Schörgenhum and M. Waser, *Chem. Commun.*, 2020, **56**, 579.
- S. R. Shirath, D. A. More and M. Muthukrishnan, *Chem. – Asian J.*, 2022, **17**, e202200642.
- G. Singh, S. Sharma, R. R. Pandey, R. Singh, T. Kumar and R. V. Anand, *Eur. J. Org. Chem.*, 2022, e202200792.
- B. Zhang, L. Liu, Sh. Mao, M.-D. Zhou, H. Wang and L. Li, *Eur. J. Org. Chem.*, 2019, 3898.
- N. Molleti and J. Y. Kang, *Org. Lett.*, 2017, **19**, 958.
- S. Xu, J. Xie, Y. Liu, W. Xu, K.-W. Tang, B. Xiong and W.-Y. Wong, *J. Org. Chem.*, 2021, **86**, 14983.
- V. V. Ershov, G. A. Nikiforov and A. A. Volod'kin, *Prostranstvenno-zatrudnennye fenoly (Sternically Hindered Phenols)*, Khimiya, Moscow, 1972 (in Russian).
- E. R. Milaeva, D. B. Shpakovsky, Yu. A. Gracheva, A. T. Antonenko, D. I. Osolodkin, V. A. Palyulin, P. N. Shevtsov, M. E. Neganova, D. V. Vinogradova and E. F. Shevtsova, *J. Organomet. Chem.*, 2015, **782**, 96.
- S. Ghatak, A. Vyas, S. Misra, P. O'Brien, A. Zambre, V. M. Fresco, R. R. Markwald, K. V. Swamy, Z. Afrasiabi, A. Choudhury, M. Khetmalas and S. Padhye, *Bioorg. Med. Chem. Lett.*, 2014, **24**, 317.
- X. Jiang, C. Hu, K. Ferchen, J. Nie, X. Cui, C.-H. Chen, L. Cheng, Z. Zuo, W. Seibel, C. He, Y. Tang, J. R. Skibbe, M. Wunderlich, W. C. Reinhold, L. Dong, C. Shen, S. Arnovitz, B. Ulrich, J. Lu, H. Weng, R. Su, H. Huang, Y. Wang, C. Li, X. Qin, J. C. Mulloy, Y. Zheng, J. E. Diao, J. Jin, C. Li, P. P. Liu, C. He, Y. Chen and J. Chen, *Nat. Commun.*, 2017, **8**, 2099.
- P. J. Kuehl, S. P. Stratton, M. B. Powell and P. B. Myrdal, *Int. J. Pharm.*, 2009, **382**, 104.
- K. Ohkura, Y. Kawaguchi, Y. Tatematsu, Y. Uto and H. Hori, *Anticancer Res.*, 2016, **36**, 3645.
- A. Parra and M. Tortosa, *ChemCatChem*, 2015, **7**, 1524.
- M. Winter, R. Schutz, A. Eitzinger, A. R. Ofial and M. Waser, *Eur. J. Org. Chem.*, 2020, 3812.
- A. Yadav, D. Kumar, M. K. Mishra and C. B. Tripathi, *J. Org. Chem.*, 2021, **86**, 2000.
- E. Gibadullina, T. T. Nguyen, A. Strelnik, A. Sapunova, A. Voloshina, I. Sudakov, A. Vyshtakalyuk, J. Voronina, M. Pudovik and A. Burilov, *Eur. J. Med. Chem.*, 2019, **184**, 111735.
- M. Sawa, T. Kiyoi, K. Kurokawa, H. Kumihara, M. Yamamoto, T. Miyasaka, Y. Ito, R. Hirayama, T. Inoue, Y. Kirii, E. Nishiaki, H. Ohmoto, Y. Maeda, E. Ishibushi, Y. Inoue, K. Yoshino and H. Kondo, *J. Med. Chem.*, 2002, **45**, 919.
- H. Liu, B. Wua, Y. Ge, J. Huang, S. Song, C. Wang, J. Yao, K. Liu, Y. Li, Y. Li and X. Ma, *Bioorg. Med. Chem.*, 2017, **25**, 6313.
- N. A. Lentini, B. J. Foust, C.-H. C. Hsiao, A. J. Wiemer and D. F. Wiemer, *J. Med. Chem.*, 2018, **61**, 8658.
- S. Demkowicz, J. Rachon, M. Dasko and W. Kozak, *RSC Adv.*, 2016, **6**, 7101.
- K. A. Fredriksen and M. Amedjkouh, *Eur. J. Org. Chem.*, 2016, 474.
- P. T. Tham, P. T. Chinh, N. V. Tuyen, D. N. Bang, D. T. Van, V. T. Kien, H. T. Thanh, D. H. Quynh, V. D. Cuong, N. H. Thanh and A. Pérez-Encabo, *Mendeleev Commun.*, 2021, **31**, 213.
- E. A. Chugunova, A. V. Smolobochkin, A. S. Gazizov, A. R. Burilov, A. D. Voloshina, A. P. Lyubina, S. K. Amerhanova, T. A. Melnikova, A. I. Tulesinova, N. I. Akylbekov, N. A. Akhatayev and V. V. Syakaev, *Mendeleev Commun.*, 2021, **31**, 865.
- N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu and S. B. Jonnalagadda, *Molecules*, 2020, **25**, 1909.
- A. Tzara, D. Xanthopoulos and A. P. Kourounakis, *ChemMedChem*, 2020, **15**, 392.
- J. Perez-Prieto, R. E. Galian, M. A. Miranda, F. Catalina, N. Martin-Vargas and F. Lopez-Ortiz, *Org. Lett.*, 2004, **6**, 561.
- E. M. Gibadullina, T. R. Shaekhov, Yu. K. Voronina, M. A. Pudovik and A. R. Burilov, *Russ. J. Org. Chem.*, 2018, **54**, 530 (Zh. Org. Khim., 2018, **54**, 532).
- L. K. Kibardina, A. V. Trifonov, A. B. Dobryin, M. A. Pudovik, A. R. Burilov, A. D. Voloshina, A. G. Strelnik and A. S. Gazizov, *Mendeleev Commun.*, 2021, **31**, 664.

Received: 22nd November 2022; Com. 22/7048