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the background of thousands of 1,4-naphthoquinone 
es presented in Thomson’s multivolume monograph1, 
roxynaphthazarins (2,3,5,8-tetrahydroxy-1,4-naphtho
, spinazarins) and their derivatives occupy an important 
eir first representatives were isolated more than 
red years ago, but information on the isolation of new 
n derivatives2-7 and their synthesis8-11 is still 
ted. Some natural compounds of this series and their 
 analogues are biologically active with antibacterial,12 
13,14 trypanocidal,15 anticancer,16-19 antimalarial,20 
l,21 and cardioprotective22 properties or are active 
4 Thus, the development of new effective syntheses of 
n derivatives remains urgent.
te, approaches for the synthesis of spinazarin derivatives 
 the Diels-Alder reaction,25 oxidation of functionally 

ed α- and β-tetralones,26 cycloacylation of hydro
 with maleic anhydrides,27-30 thermal rearrangement of 
hydroxycyclobutenones31 and some others.32,33 All of 
 not good for scaling due to multistage schemes, low 
ields or poor availability of initial substrates.

The cycloacylation of hydroquinones with dichloromaleic 
anhydride readily gives functionally substituted 2,3-dichloro
naphthazarins 1 in high yields (Scheme 1).27-30 However, the 
further replacement of chlorine atoms by methoxy groups with 
the aim of further conversion of intermediate 2,3-dimethoxy
naphthazarins 2 into spinazarin derivatives required a huge 
excess of saturated sodium methoxide solution in methanol.34 
The problem was solved by the use of methanol activated by 
fluoride anion in the presence of alumina.35,36 In many cases, the 
most appropriate reagent for the conversion of alkoxy 
naphthazarins into the corresponding hydroxy derivatives is 
aluminum chloride in nitrobenzene (Scheme 1, Path A).36 
An alternative sequential conversion of 2,3-dichloro-1,4-
naphthoquinones 1 to 2-hydroxy-3-nitro- and further 3-amino-2-
hydroxy-1,4-naphthoquinones37 was later adapted for the 
synthesis of 2,3-dihydroxynaphthazarins 4 and 5, respectively 
(Path B).38-41 However, both methods gave low yields of β-OH 
derivatives.

This work describes a simple two-stage method for the 
preparation of spinazarins from the corresponding 2,3-dichloro 
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  Reagents and conditions: i, ROH, K(Cs)F, alumina, 90-100 ºC, 6-12 h; ii, AlCl3, PhNO2; iii, NaNO2, MeOH-acetone, reflux; iv, Na2S2O4 or 
CO2H-H2O-H2SO4, reflux.
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derivatives 1a-j based on the replacement of chlorine atoms 
with azido groups followed by the acid-catalyzed conversion of 
diazides 6a-j to dihydroxy naphthazarins 3a-j (Scheme 2).† 
Most of the obtained azido derivatives, with the exception of 6d, 
are new compounds. Their structure is confirmed by spectral 
(IR, NMR, HRMS) data. In the IR spectra of azido derivatives, 
the azido group appears as a highly intense band in the region of 
about 2110 cm-1. 

Chemistry of organic azides has been the subject of 
investigations because of their importance in the synthesis of 
amides, urea derivatives, carbamates, urethanes, and nitrogen-
containing heterocyclic compounds.42-44 Azido-1,4-benzo- and 
azido-1,4-naphthoquinones are easily prepared and can function 
as penultimate precursors to a large variety of other valuable 
compounds.45 However, the properties of azido-substituted 
naphthazarins were less studied, viz., only their cytotoxic 
activity46 and conversion to amino derivatives have been 
described.47

Based on reported DMSO-mediated transformation 
of 3-amino-2-hydroxynaphthazarins to 2,3-dihydroxy

naphthazarins,40 the known ease of azido group reduction to the 
amino one, and the assumption that 2,3-diaminonaphthazarins 
are likely intermediates of the reaction, we converted 
2,3-diazidonaphthazarins into 2,3-dihydroxynaphthazarins. The 
conditions described40 (Table 1, entries 1 and 2) were taken as 
the starting points for optimization. The presence of formic acid 
in the reaction mixture could explain the reduction of azido 
naphthazarins to amino derivatives, and the presence of DMSO 
could account for the conversion of 2,3-diamino derivatives to 
2,3-dihydroxy derivatives (spinazarins), similar to that 
described.40 However, further optimization of the conditions 
showed that the presence of water and a strong acid was sufficient 
for the successful conversion of the diazido derivatives to 
spinazarins (entries 8-10). 

6,7-Diazido-2-hydroxynaphthazarin 6a as a precursor of 
spinochrome D 3a, one of the most demanded and difficult to 
obtain spinochromes, was used as the model compound to 
optimize the reaction conditions. A mixture acetic acid-water-
sulfuric acid (see Table 1, entry 12) was chosen as optimal for 
conversion, since it provides sufficient solubility of the starting 
diazide 6a, greater conversion to the desired product 3a and 
less resinification of the reaction mixture. The long reaction 
time (entry 1) and the low solubility of the starting azide in 
aqueous sulfuric acid (entry 11) lead to a strong resinification 
of the reaction mixture. The absence of a strong acid in the 
reaction mixture (entries 1, 3, 6) results in a low yield of the 
desired product 3a.

Optimized conditions were used to obtain a number of 
2,3-dihydroxynaphthazarins 3, among which several natural sea 
urchin pigments such as spinazarin 3d, ethylspinazarin 3f, 
echinochrome A 3b, spinochromes D 3a and E 3j were present 
(see Scheme 2). However, the reaction of butoxy derivative 6g 
in a mixture AcOH-H2SO4-H2O is accompanied by hydrolysis 
of the alkoxy group and gives spinochrome D 3a in 52% yield. 
In order to preserve alkoxy groups, described in ref. 40, mixture 
of formic and dilute sulfuric acids with the addition of DMSO 
was used for the conversion of alkoxy diazides 6g,i. It should 
also be noted that the yield of final polyhydroxy naphthazarins 
6a-j depends on the solubility of the starting azido derivatives. 
Thus, the lowest yields and strong resinification were observed 
for less polar azido derivatives 3g,i, and especially 3j, which 
were almost insoluble in the solvent systems used.

The applicability of thus developed procedure for chlorinated 
derivatives containing β-hydroxy groups 6a-c is an advantage 
over the previously described methods.35-41 Most starting 
2,3-dichloronaphthazarins 1 can be readily obtained by 

Table  1  Optimization of the conditions for transformation 6a → 3a.a

Entry Mediumb t / h
HPLC yield 
of 3a (%)

  1c HCO2H-DMSO (1:1) 4.5   1
  2d HCO2H-DMSO-H2O-H2SO4 

(2.5 : 0.8 : 0.3 : 0.05)
0.5 79e

  3 AcOH 1   3
  4 AcOH-H2O-H2SO4 (2.6 : 0.3 : 0.05) 1 79
  5 AcOH-HCO2H-H2O-H2SO4 

(2.6 : 0.1 : 0.3 : 0.05)
1 82

  6 AcOH-HCO2H (2.8 : 0.2) 1   7
  7 AcOH-H2O-CF3CO2H (1 : 1 : 1) 2 51
  8 H2O-CF3CO2H (2 : 1) 2 82
  9 H2O-CF3CO2H (1 : 1) 2 63f

10 H2O-MeSO3H (1 : 1) 1 88
11 H2O-H2SO4 (2.6 : 0.2) 1 62
12 AcOH-H2O-H2SO4 (1.5 : 1.25 : 0.13) 1 92
a Initial concentration of 6a 16.7 mm in 0.05 mmol scale runs, total volume 
of the media 3 ml. b Volume ratios of the components. c Method A described 
in ref. 40. d Method B described in ref. 40. e Recovery of 6a 4%. f Recovery 
of 6a 10%.

† In each case the structures of naphthazarin (5,8-dihydroxy-1,4-naphtho
quinone) derivatives are given only for one of all possible tautomers.
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Scheme  2  Reagents and conditions: i, NaN3, DMSO, room temperature, 12 h; ii, NaN3, MeOH, reflux, 6 h (for 1d-j); iii, 6a-f,h,j (2 mmol), 
AcOH-H2O–H2SO4 (3 : 2.5 : 0.25, v / v, 160 ml), 120 °C, 1 h; iv, 6g,i (2 mmol), HCO2H–DMSO–H2O–H2SO4 (8 : 2.7 : 1 : 0.1.7, v/v, 185 ml), 120 °C, 1 h.
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cycloacylation of 1,4-dimethoxy (or 1,4-dihydroxy) benzenes 
with commercially available dichloromaleic anhydride or by 
chlorination of naphthazarins in the HCl / MnO2 system.27-30 In 
turn, 2,3-diazidonaphthazarins 6 can be easily prepared from the 
corresponding 2,3-dichloro derivatives 1 in high yields. The 
reactions of sodium azide with 2,3-dichloronaphthazarins not 
containing β-OH groups can be carried out in methanol or 
acetone solution, while for substrates with β-OH groups DMSO 
or DMF should be employed.

In summary, a novel and concise approach to 
2,3-dihydroxynaphthazarins has been developed. Many of these 
compounds are natural biologically active compounds that are 
difficult to obtain by other methods. The developed technique 
makes these compounds more accessible for a detailed study of 
the biological activity and use in the synthesis of other natural 
quinonoid compounds and their analogues.
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