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Synthesis of 1-oxa-9-azaspiro[5.5]undecane-9-sulfonamides  
bearing a diverse molecular periphery and a rare zinc-binding group  
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We dedicate this article to the anniversary of the brilliant organic scientist Irina Petrovna Beletskaya.

arbonic anhydrases (CAs) are Znii metalloenzymes (EC 4.2.1.1) 
hich catalyze the fundamental reaction of reversible hydration 
f carbon dioxide to bicarbonate anion, the process which is 
entral to the pH control, ion transport and fluid secretion.1 
yperactivity of certain CA isoforms2 under pathological 

onditions makes these proteins targets for small-molecule 
arbonic anhydrase inhibitors (CAIs).3 Currently, CAIs find 
pplications in the clinic for the treatment of glaucoma,4 
diopathic intracranial hypertension,5 high-altitude sickness,6 
ongestive heart failure,7 peptic ulcers7 and epilepsy.9 An 
merging investigational application of inhibitors of human (h) 
A IX and XII isoforms10 is in therapy of cancer.11,12 The most 
dvanced therapeutic agents of this class are the hCA IX-
elective drug SLC-011113 currently undergoing phase Ib clinical 
rials for neoplasms overexpressing hCA IX14 and non-selective 
nhibitor E7070 (indisulam) developed by Eisai Co., Ltd. which 
as successfully completed phase II clinical trials.15 

Therefore, the discovery of new chemotypes capable of 
nhibiting various CAs continues being a significant goal. Since 
As contain a Zn2+ ion in its active site, this determines the zinc-
inding nature of the pharmacophoric groups for its targeting. 
ndeed, most of the CAIs in clinical investigation (SLC-0111 
nd E7070) and clinical use (e.g., acetazolamide, methazolamide, 
orzolamide, brinzolamide and zonisamide) are primary 
ulfonamides in which the sulfonamide group coordinates to the 
rosthetic zinc ion while the molecular periphery is the critical 
eterminant of the inhibitor’s potency and isoform selectivity 
Figure 1).

The sulfamide group (sulfone moiety connected to two 
itrogen atoms) as opposed to sulfonamides (sulfone group is 
onnected to carbon and nitrogen atoms) are by far less explored 
s zinc-binding groups for CA interrogation.16,17 At the same 

time, introduction of a nitrogen atom in lieu of a carbon atom is 
likely to have not only a bearing on the coordinating ability of 
the sulfamide group but will also reflect positively on the 
compounds’ physicochemical profile, in particular, its aqueous 
solubility. Additional significant void in the chemical space of 
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 fundamentally novel type of molecular probes for the 
ecognition by carbonic anhydrase zinc enzymes which 
onstitute promising target family in diverse therapeutic 
reas has been designed and synthesized. To the best of our 
nowledge, these molecular tools of 1-oxa-9-azaspiro[5.5]
ndecane-9-sulfonamide chemotype for the first time 
ombine in their structure diversely substituted spirocyclic 
iperidines and an aminosulfamoyl moiety. 
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Figure  1  CAIs currently in clinical development and clinical use. 
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known CAIs are spirocycles.18 While the majority of known 
CAIs are flat aromatic carba- and heterocycles (benzene
sulfonamides and their heterocyclic analogues), the high-Fsp3, 
three-dimensional character of spirocyclic moieties is largely 
overlooked in the CAI design. This is unfortunate considering 
the widely accepted privileged character of spirocycles in the 
contemporary drug design.19 Furthermore, incorporating 
spirocycles into investigational drugs makes the latter more 
‘natural-like’ considering the omnipresence of such frameworks 
in natural products.20

In this work, we aimed to fill that void by combining both of 
the ‘unjustly underutilized’ motifs, i.e., a spirocycle and the 
sulfamide linkage within the same molecule and thus create a 
novel set of compounds for carbonic anhydrase interrogation. 
To this end, we turned to our arsenal of 1-oxa-9-azaspiro[5.5]
undecanes 1a–j (Scheme 1) which we previously successfully 
employed in the synthesis of free fatty acid receptor 1 agonists 
(1a–c,i,j in ref. 20; 1e,g,h in ref. 21; 1d,f in ref. 22) as well as, 
more recently, in the design of efficacious antibacterial 
derivatives of ciprofloxacin.23 We considered these shelf-stable 
spirocyclic amine hydrochloride salts a diverse enough set of 
spirocyclic piperidines to be converted into the target sulfamides.

With the arsenal of building blocks 1a–j at hand, we proceeded 
converting them into the target sulfamides (see Scheme 1). 
Commercially available chlorosulfonyl isocyanate was reacted 
with tert-butyl alcohol in dichloromethane at 0 °C. The resulting 
tert-butyl N-(chlorosulfonyl)carbamate 2 was reacted with 
building blocks 1a–j in the presence of excess triethylamine to 
scavenge two equivalents of liberated HCl. Finally, after brief 
fractionation on the pad of silica, the intermediate Boc-protected 
derivatives 3a–j were treated with 4 m HCl in 1,4-dioxane to 
remove the Boc group. Thus, target spirocyclic sulfamides 4a–j 
were obtained in modest to good yields over three steps (see 
Scheme 1).

Analysis of key molecular characteristics defining 
druglikeness, solubility and prospects of compound’s absorption 
through the gastrointestinal tract was performed from compounds 
4a–j using swissadme.ch online tool (Table 1). All ten compounds 
strictly conform to the rules of druglikeness, show optimum 
lipophilicity, zero violations of the Lipinski rule of five24 and are 
predicted to be soluble in aqueous medium which is likely 

connected to their being predicted to absorb well in the 
gastrointestinal tract.

In summary, we have designed and synthesized a 
fundamentally novel type of molecular probes for the recognition 
by carbonic anhydrase zinc enzymes which constitute promising 
target family in diverse therapeutic areas. To the best of our 
knowledge, these molecular tools for the first time combine in 
their structure diversely substituted spirocyclic piperidines and 
an aminosulfamoyl moiety which diversifies them from the so 
far published potential carbonic anhydrase inhibitors. Biological 
profiling of these compounds against a panel of carbonic 
anhydrases is scheduled for the near future. The results of this 
investigation will be reported in due course.
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We thank the Research Center for Magnetic Resonance and the 
Center for Chemical Analysis and Materials Research of Saint 
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