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d its derivatives are important objects of 
chemistry and chemical engineering. The 
and the presence of homoconjugated double 
rbornadiene molecule highly reactive.1 Such 
 a wide application as important synthetic 
useful building blocks in organic synthesis,2–4 
tive monomers.5–7 The ability to undergo the 
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d almost unexplored.11,12 Considering the 
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and chemistry of materials,13 the development 
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have described the preparation of 6-aryl-5-
rnenes 1 via the Diels–Alder reaction of 
renes14,15 with cyclopentadiene.16 In this study, 
ctive and selective synthesis of novel 3-aryl-2-

fluoronorbornadienes 2 (Scheme 1). Moreover, in the frames of 
this study we discovered the Meinwald-type rearrangement17 of 
2-fluoro-3-arylnorbornadienes 2 into novel bicyclic acyl fluorides.

To our delight, the base-induced elimination of nitrous acid 
from 6-aryl-5-fluoro-5-nitronorbornenes 1a–f occurs selectively 
leading cleanly to fluorinated norbornadienes 2a–f (see 
Scheme 1). No elimination of HF to form the corresponding 
nitronorbornadienes was observed. These data can be explained 
by syn-elimination which is typical of norbornenes.18 Since 
fluoro derivatives 2 turned out to be very unstable, it was necessary 
to find the optimal conditions for elimination and purification 
(see Online Supplementary Materials). As a result, a set of novel 
norbornadienes 2a–f was obtained in yields up to 95%. 

We noticed significant changes in 19F NMR spectrum of 
compound 2a upon standing in solution. A new doublet peak at 
positive area (46.6 ppm) appeared in its 19F NMR spectrum 
indicating deep structural changes. We found that this 
transformation proceeds faster and more efficiently with 
exposure of UV irradiation (Scheme 2). As a result, novel 
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bicyclic acyl fluoride 3a of bicyclo[3.1.0]hex-2-ene series was 
isolated in 45% yield. The structure was unambiguously proved 
by combination of NMR, FTIR (see Online Supplementary 
Materials) and X-ray diffraction analysis of the corresponding 
carboxylic acid 5a (Figure 1).† Bicyclic compound 5a represents 
the 1SR,2RS,6RS-diastereomer. Such a transformation looks 
similar to the Meinwald rearrangement previously discovered in 
the course of epoxidation of norbornadiene with peroxyacetic 
acid to form the corresponding bicyclic aldehyde.19 Therefore, 
we discovered the first example of fluoro-Meinwald 
rearrangement. It should be noted that we found no examples of 
similar rearrangement for other halogenated norbornenes.

In order to confirm the nature of the new rearrangement 
observed, we treated fluoronorbornadienes 2 with m-chloro
peroxybenzoic acid in the dark under inert atmosphere. We 
found that the formation of the same acyl fluoride 3 took place 
upon epoxidation. Besides, the formation of non-fluorinated 
hydroxy ketones 4 as side products was observed for both 
procedures. 

We demonstrated some transformation of acyl fluorides 3 
(Scheme 3) typical of acyl halides. For example, their hydrolysis 
afforded the corresponding carboxylic acids 5. The reaction of 
3a,b with pyrrolidine gave the corresponding amides 6a,b. 

We proposed the following reaction mechanism based on the 
Meinwald rearrangement that involves the formation of the 
epoxide intermediate (Scheme 4). We believe that the key step is 
the ring opening of oxirane A. Due to significant strain this 
intermediate would very easily transform into carbocation C 
by  protonation. The intermediate B is transformed into 4 by 
hydration through intermediate D, however, the major direction 
is its rearrangement into 3 through intermediate C.

To confirm that strain can be the driving force of the reaction, 
we decided to study the similar reaction with homologous 
fluorinated bicyclic system, namely, bicyclo[2.2.2]oct-2-ene 
(Scheme 5). Elimination of nitrous acid from cycloadduct 7 
proceeded smoothly to form the corresponding bicyclo[2.2.2]
octa-2,5-diene 8. However, our attempt to perform the Meinwald 
rearrangement into 9 was not successful both under UV-
irradiation and in the presence of m-CPBA.

In summary, base-induced HNO2 elimination from 
fluoro(nitro)norbornenes 1 was accomplished to prepare a set of 
novel fluorinated norbornadienes 2. The latter were found to 
undergo the fluoro-Meinwald rearrangement under UV-irradiation 
to give bicyclic acyl fluorides 3. The driving force of the 
transformation is the significant strain of the epoxide intermediate 
formed via oxidation of fluorinated norbornadienes 2.
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Figure  1  Ellipsoid plot drawing for compound 5a with 50% probability.
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Scheme  3  Reagents and conditions: i, NaOH, room temperature, 15 h, 
then HCl; ii, pyrrolidine, CH2Cl2, room temperature, 5 min.
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