

XAS study of murataite-based ceramics and crystalline film of ThO₂

Andrei E. Putkov, Yury A. Teterin, Alexander L. Trigub, Sergey V. Yudintsev, Olga I. Stefanovskaya, Kirill E. Ivanov, Stepan N. Kalmykov and Vladimir G. Petrov

Sample preparation

Crystalline film ThO₂ sample was mounted under the synchrotron radiation beam, murataite ceramics sample was mixed with cellulose, ground and pressed into a pellet.

EXAFS spectroscopy

X-ray absorption spectra of the L_{III} absorption edge in the X-ray fluorescence yield registration mode (ThO₂ film) and in transmission mode (murataite ceramics) were measured at the station «Structural material science» of the Kurchatov Synchrotron Radiation Center of the National Research Center «Kurchatov Institute» [S1].

Synchrotron radiation was obtained using the 2.5 GeV electron beam at 80-100 mA. Intensity of the incident radiation was registered using ionization chamber filled with nitrogen. A silicon diode with avalanche amplification by FMB Oxford (UK) located at 90° to the beam was used as a fluorescence detector. Ionization chambers filled with argon were used as transmission detectors. The beam size on the sample was 1 mm². A silicon monoblock crystal with a slot forming two reflecting (220) surfaces was used as a monochromator.

Calibration of the X-ray absorption spectra of ThO₂ film and thorium-containing murataite ceramics was done taking into account the Th 4f_{7/2} and Th 2p_{3/2} binding energies of metallic thorium being 335.2 eV and 16300.3 eV [S2], respectively and the Th 4f_{7/2} binding energies in the film and ceramics being 334.4 eV and 334.0 eV, respectively measured earlier by XPS [S3, S4]. With these data in mind, the absorption edges E₀ 16299.5 eV and 16299.1 eV in the spectra of ThO₂ and ceramics, respectively were chosen.

Since the composition and the structure of the first coordination sphere of thorium in ceramics and ThO₂ film were suggested to be the same, the spectra were processed using the Athena program [S5] in the same sequence: background subtraction; calibration by the Th L_{III}-edge shift; atomic absorption separation μ_0 ; Fourier transform with the weight coefficient k³ in the range k=2÷10 Å⁻¹. The threshold energy was chosen by the first derivative of the L_{III} absorption edge, afterward, the ionization E₀ threshold energy was varied.

The normalized function $\chi(k)$ was calculated by (1):

$$\chi(k) = \frac{\mu(k) - \mu_0(k)}{\mu_0(k)}, \quad (1)$$

where $\mu(k)$ is the experimentally measured absorption coefficient, $\mu_0(k)$ – absorption coefficient of a free atom modelled by a set of cubic splines, k – photoelectron wave number.

The number of independent parameters (N_{ind}) was calculated by (2):

$$N_{\text{ind}} = 2\Delta k \Delta r / \pi, \quad (2)$$

where Δk and Δr reflect the number of independent points in the k and R spaces, respectively. The value of the amplitude reduction factor $S_0^2 = 0,9$ was fixed.

The modeling was done by the functional minimization (3):

$$\chi^2_v = \frac{N_{\text{ind}}}{v N_{\text{pts}}} \sum_{i=1}^{N_{\text{pts}}} \frac{(\chi_{\text{data}}(R_i) - \chi_{\text{th}}(R_i))^2}{\varepsilon_i^2} \quad (3),$$

where N_{pts} is the number of points in the fitted range, v is the number of degrees of freedom, $\chi_{\text{data}}(r_i)$ and $\chi_{\text{th}}(r_i)$ are the calculated and experimental EXAFS-response respectively, ε_i is the measurement uncertainty associated with point i .

The modeling quality was determined by the R-factor (R_f) (absolute standard deviation between the model and experimental spectra). The R-factor (R_f) was calculated by (4):

$$R_f = \sum_{i=1}^{N_{\text{pts}}} \frac{[Re(\chi_{\text{data}}(R_i) - \chi_{\text{th}}(R_i))]^2 + [Im(\chi_{\text{data}}(R_i) - \chi_{\text{th}}(R_i))]^2}{[Re(\chi_{\text{data}}(R_i))]^2 + [Im(\chi_{\text{data}}(R_i))]^2}, \quad (4)$$

where N_{pts} is the number of points in the modeling range, $\chi_{\text{th}}(R_i)$ and $\chi_{\text{data}}(R_i)$ are the calculated and experimental EXAFS signal, respectively. It has to be noted that R_f is the lower, the higher modeling reliability is.

Spectra modeling was done in the R-space using Artemis program [S5].

References

- S1. A. A. Chernyshov, A. A. Veligzhanin and Y. V. Zubavichus, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 2009, **603**, 95.
- S2. J. A. Bearden and A. F. Burr, *Rev. Mod. Phys.*, 1967, **39**, 125.
- S3. A. E. Putkov, K. I. Maslakov, A. Yu. Teterin, Yu. A. Teterin, M. V. Ryzhkov, K. E. Ivanov, S. N. Kalmykov and V. G. Petrov, *Radiochemistry*, 2022, **64**, 133 (*Radiokhimiya*, 2022, **64**, 133).
- S4. K. I. Maslakov, Yu. A. Teterin, O. I. Stefanovskaya, S. N. Kalmykov, A. Yu. Teterin, K. E. Ivanov, S. V. Yudintsev and B. F. Myasoedov, *Radiochemistry*, 2020, **62**, 599 (*Radiokhimiya*, 2020, **62**, 402).
- S5. B. Ravel and M. Newville, *J. Synchrotron Radiat.*, 2005, **12**, 537.