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associated with a common method for finding 
utions to systems of kinetic equations, the so-
y-state approximation (QSSA). At the beginning 
y, Bodenstein clearly formulated the QSSA for 
s,1 and in the 1930s Semenov developed it for 
 reactions.2 According to this method, the time 
sponding to some intermediates are assumed to 
e course of the reaction. This procedure replaces 
quations with algebraic ones, simplifying the 

rt of the problem.
he QSSA had a profound and beneficial influence 
ent of chemical kinetics, especially before the 
uters in chemical practice, and usually gave 
lts, but as the method became widely used in 
e, difficulties arose so often that it is obvious, 
nditions were required for its applicability. One 
d best known attempts to justify the QSSA was 
amenetsky,3 who considered a chemical system 

a steady state and found that the lifetime of 
 which the QSSA could be applied, should be 
he characteristic reaction time. Rice later came 
lusion.4 This criterion did not contradict common 
tuitively understandable. However, later it was 

r the validity of the QSSA, these requirements 
sary conditions rather than sufficient ones, which 

ly required for a logically correct application.
for using the QSSA are often formulated as 
sed on concentrations: the concentration of the 
estion must be much lower than the concentration 

 In his classic book,6 Hammett articulated this 
idering the mechanism of consecutive first-order 
ing only one intermediate and suggesting that 
 the case of more complex kinetic mechanisms. 
rmulated in terms of concentration, are usually 
te textbooks on chemical kinetics.7–9

ntion is the work by Benson,10 in which, after 
ral particular kinetic systems that are simple 

enough for an exact solution, he formulated the following conditions 
for justifying the QSSA. Namely, the rate of formation of the 
intermediate in question should be low compared with the rate of 
its removal by other processes. The conditions found this way were 
then speculatively extended to the general case that, of course, 
cannot be accepted as a rigorous approach. Note that the requirement 
for a low concentration of a fast intermediate is virtually equivalent 
to Benson’s criterion. In addition, Benson has clearly demonstrated 
the existence of an induction period of establishing a steady 
state. It is obvious that the shorter the induction period compared 
with the characteristic reaction time, the better the approximation 
given by the QSSA.

However, in the field of large complex kinetic schemes, the 
QSSA could give wrong results. For example, as was shown by 
Edelson11 for a mechanism that models the explosion limits of 
carbon monoxide–oxygen mixtures and includes twenty four 
elementary reactions, the appropriate solution to the corresponding 
set of kinetic equations can be found by numerical methods 
rather than by the QSSA. The title of the paper by Farrow and 
Edelson12 ‘The Steady-State Approximation: Fact or Fiction?’ 
(with emphasis on the latter) typifies the undeserved consequences 
for the reputation of the QSSA, which obviously arose due to the 
lack of well-defined mathematical criteria for the use of the QSSA. 
It is worth noting that the kinetics of chemical reactions, which 
includes some elementary processes, the time scales of which 
differ significantly, can be modeled by a set of differential equations, 
which are called stiff systems. The direct integration of such systems 
by numerical methods usually encountered certain difficulties.13 
Note that the QSSA was in fact intended to deal with stiff systems. 
When the stiffness problem has been generally overcome, the QSSA 
becomes almost irrelevant, at least for large kinetic systems. This 
was dramatized by the fact that in the 1970s interest in the QSSA 
began to wane as chemical kinetics fell out fashion.

This disappointment in the QSSA occurred despite the results 
obtained two decades earlier by Sayasov and Vasil’eva,14 who 
approached the problem of the QSSA using the important 
achievement of asymptotic analysis, Tikhonov’s theorem.15 By 
changing the variables in the system of differential equations 
corresponding to the general reaction mechanism, which involves 
some elementary processes with significantly different time scales, 
they transformed it into a set of differential equations, some of 
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which contain small parameters multiplying time derivatives. 
These are the so-called singularly perturbed equations describing 
the behavior of short-lived intermediates. Thus, the use of the QSSA 
means zeroing out these small parameters that gives a zero-order 
approximation to the exact solution. Sayasov and Vasil’eva showed 
that the smallness of these parameters is not sufficient for obtaining a 
satisfactory approximation and that the right-hand side of the system 
of differential equations must also satisfy some additional conditions 
that were not taken into account earlier. Unfortunately, this work 
had almost no effect on the state of the art in physical chemistry 
at that time, probably because of excessive mathematical rigor.

Almost three decades later, a much more successful introduction 
of Tikhonov’s theorem into chemical kinetics was made by 
Klonowski,16 who considered several special cases of relatively 
small kinetic systems, in particular the classical Michaelis–Menten 
mechanism, as a clear illustration of the use of this mathematical 
theory to justify the QSSA. Since that time, Tikhonov’s theorem 
has firmly taken its place at the heart of modern studies dealing 
with stiff kinetic systems.17

Thus, there exist well-founded criteria for the application of 
the QSSA, which remain important primarily from a didactic 
point of view, since the widely accepted basic results of chemical 
kinetics were obtained by the QSSA long before its proper 
justification. In addition, the QSSA is still a working tool in the 
study of kinetic mechanisms that involve only a few short-lived 
intermediates, while large kinetic systems are usually the subject 
of numerical methods.

So, it would seem that the story of developing the concept of 
the QSSA was successfully completed. Nevertheless, from time 
to time an old misconception appears in the literature, in which 
the idea of the QSSA reduces to the requirement that the short-
lived intermediate in question has a rate approximately equal to 
zero for a considerable time interval. The purpose of these notes 
is to demonstrate that the misconception about the QSSA can be 
easily eliminated within the framework that is mathematically 
explicit and understandable to chemists with ordinary mathematical 
education and is based on the geometric representation of kinetic 
differential equations with singular perturbation developed by 
Mishchenko and Rozov;18 as an illustration, the Michaelis–Menten 
mechanism will be considered.

To begin with, let us consider the following one-dimensional 
differential equation with the derivative multiplied by a small 
parameter:

( ), (0)
d
d
t
x
f x x x0e = = ,	 (1)

where x is a scalar function of time, f (x) is a continuous function 
differentiable at all points of the number line, e is positive and small 
compared to unit. Being simple and clear, this artificial case has 
the main features of real kinetic schemes, to which the QSSA is 
applicable.

The geometric representation of the qualitative behavior of 
equation (1) is called its phase portrait, which in this case is simply 
a straight line (Figure 1), along which the image point representing 
equation (1) moves at a velocity f (x)/e.19 The roots of the equation 
f (x) = 0 are called fixed points. They completely determine the 
nature of the movement of the image point on the phase line, which 
obeys equation (1). From the point of view of the QSSA, we are 
only interested in one type of fixed points, the so-called attractors, 
where the image point remains for all t, once it gets there. Let 
x = a > x0 be one of the roots, i.e., f (a) = 0. One can specify the 

conditions under which this point is an attractor. In the neighbor
hood of x = a,

f (x) = (x − a) fx'(a) + o (x − a).	 (2)

So, if fx' < 0, then the fixed point x = a is stable. In other words, the 
solution of equation  (1) x  =  x(t,e) is close to x  =  a as t  ®  ∞ 
assuming that the interval (x0,a) has no other fixed points.

It may take a short time for the phase point to come into the 
e-neighborhood of x = a from the point x(0) = x0, since at each 
point of the x-axis located far enough from the attractor, the phase 
velocity f (x)/e can be very large depending on the smallness of e. 
This time is in fact an induction period followed by a steady state 
corresponding to x = a.

Thus, the conditions under which the QSSA may be applied 
to equation (1) are as follows. Firstly, the value of e must be small 
so that the induction period is short, and secondly, fx'(a)  <  0, 
which ensures that the fixed point will be an attractor.

At present the QSSA is primarily used in the study of small 
kinetic schemes, in particular the Michaelis–Menten scheme or 
something similar. It is worth noting that such systems are often 
encountered in photoreactions involving fast elementary processes.20

Once properly scaled, a reaction involving more than one 
step, such as

Reactant ®¬ Intermediate ®¬ Product,	 (3)

can be modeled by a set of differential equations in the form
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where x and y are the scaled concentrations of the intermediate 
and reactant, respectively, as scalar functions of time t, while e is 
a positive parameter, which is assumed to be small compared to 
unity. Initial conditions: x = 0 and y = y0 at t = 0.

The constrained system that results from system (4) when e = 0 
is as follows:
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The conditions, under which the solution of set (5) is a zero-
order approximation to the solution of set (4) as e ® 0, actually 
determine the validity of the QSSA.

Set (5) is not a normal differential system (the first equation is 
algebraic), so there is no solution with an arbitrary initial point, 
but only with the point that belongs to the curve f (x, y) = 0.18 
Therefore, rigorously speaking, we may directly compare the 
solutions of systems (4) and (5) only when the initial points of the 
former lie in the neighborhood of the curve. Stiff sets of differential 
equations that model the chemical mechanism do not hold because 
the initial point of any intermediate is zero and is normally far 
from the characteristic curve f (x, y) = 0. Nevertheless, under certain 
conditions, an arbitrary trajectory of system (4), starting at the 
point (0, y0), located at a finite distance from the curve, falls into 
its vicinity. In the case of a two-dimensional system, its phase 
trajectories can be easily represented geometrically, as shown in 
Figure 2. At each point of the phase plane (x, y) for system (4), 
there is a phase velocity vector:

( , ) ( , ), ( , )x y f x y g x y
1n e= 8 B.	 (6)

If the initial point of the phase motion (0, y0) is at a finite 
distance from the characteristic curve, then as e ® 0 the phase 
velocity vector has an infinitely large first component, while 
the second component is finite. Therefore, there occurs a 
rapid (almost instantaneous) change in the x coordinate, while 
the y coordinate remains almost constant, i.e., the trajectory  

x0 xa

Figure  1  Phase portrait of a one-dimensional differential equation with an 
attractor at x = a and an initial condition x0 at t = 0.
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of system (4) is close to the trajectory of motion along the 
straight line y = y0 according to the equation

( , )
d
d
t
x
f x y0e = .	 (7)

Thus, the problem actually reduces to the one-dimensional case 
considered above. In terms of the qualitative theory of differential 
equations with a small parameter,18 the steady state corresponds 
to the slow motion of the phase point along the stable portion of 
the curve f (x, y) = 0. By definition, the totality of all points where   
¶ f (x, y)/¶x < 0 is called a stable portion of the curve. At points 
where ¶ f /¶ x ³ 0, the phase point may leave the curve, i.e., the 
QSSA cannot be valid.

A highly reactive intermediate can be chosen as the QSSA 
variable, provided that the derivative with respect to its concentration 
on the right-hand side of the corresponding rate equation is 
negative. Upon decaying, the intermediate usually enters into a 
monomolecular or bimolecular elementary reaction (or both), 
which ensures the appearance of the corresponding negative terms 
on the right-hand side and the validity of the QSSA is normally 
fulfilled. However, in more complex cases, for example, in chain 
reactions, the possibility of the appearance of unstable points of 
the characteristic curve must not be ruled out.

By way of illustration, let us consider the classical Michaelis–
Menten mechanism21 for irreversible single-substrate enzymatic 
reactions:

E + S
k1

k–1

ES
k2

E + P, 	 (8)

where S is the substrate, E is the enzyme, ES is the complex 
between them and P is the product. The differential equations 
corresponding to scheme (8) have the form
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Here e, s and c are scalar functions of time denoting the current 
concentrations of the enzyme, substrate and complex between 
them, respectively. The differential equation for product concentra
tion can be omitted due to the mass balance equation s + c + p = s0, 
where p is the current product concentration and s0 is the initial 
substrate concentration. Taking into account another mass balance 
equation, e + c = e0, where e0 is the initial concentration of the 
enzyme, we finally obtain the following system of rate equations:
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There are initial values: s(0) = s0 and c(0) = 0.
Introducing the characteristic reaction time t = k1e0t, i.e., the 

dimensionless time measured during the reaction in units of 1/k1e0, 

and dividing both sides of the first equation of system (10) by the 
factor (k−1 + k2), we obtain
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Here e = k1e0/(k−1 + k2) = e0 /KM, where KM = (k−1 + k2)/k1 is the 
Michaelis constant. It is entirely possible that the value of e 
introduced in this way may be small.21

Introducing dimensionless concentrations x = c/e0 and y = s/e0, 
we finally obtain from system (11)
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This scaling of variables is not unique, and its choice can play an 
important role in particular cases.22

The parameter e enters the first equation of set (12) both on 
the left-hand side (singular perturbation) and on the right-hand 
side (regular perturbation), which seems to be a typical feature of 
common kinetic schemes.23 Since the QSSA is a zero-order 
approximation of singular perturbation, we may keep the parameter 
e on the right-hand side of the equation, so that the constrained 
system that results from system (12) is as follows:
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The conditions under which the solution of system (13) is a zero-
order approximation to the solution of system  (12) actually 
determine the validity of the QSSA. It is worth noting that systems (12) 
and (13) correspond to systems (4) and (5), respectively.

The characteristic curve is defined by the equation f (x,y) ≡ ey − 
− eyx − x = 0 and obviously ∂f /∂x < 0 for all y ³ 0, so that the 
curve y = x / [e(1 − x)] is stable at all x ³ 0. The time required for the 
phase point to fall into the e-vicinity of the curve determines the 
induction period tin of the establishment of a steady state. It can be 
estimated from the first equation of system (12) in the following way:

,
d

y y x
x
10 0

in

x

0

1

.t e
e e- +^ hy 	 (14)

where the upper limit, x1 = ey0 /(1 + ey0) − e, defines a point on 
the straight line y = y0 ≡ s0  /e0  in the e-vicinity of the curve (see 
Figure 2). From equation (14), it is easy to obtain

( )
( ) .ln

y y1

1
1

1
in

0 0
.t e

e
e e-

+
+ 	 (15)

As mentioned above, in order to be able to apply the QSAR, the 
induction period must be significantly less than the characteristic 
reaction time, i.e., in dimensionless form tin << 1. Equation (15) 
was obtained under the assumption that the parameter e is small, 
since the value of y0 can vary over a wide range. If ey0 << 1, then 
it follows from equation (15) that tin ≈ eln(1/y0). In the case of 
ey0 >> 1, tin ≈ (1/y0)ln(1/e), in other words, tin = o(1) independently 
of y0. Thus, in the case of Michaelis–Menten scheme (8) with 
particular scaling of variables, a sufficient condition for the validity 
of the QSSA is e0 / KM <<  1 in combination with the existence of 
a stable characteristic curve.

Generally, the QSSA for finding approximate solutions for 
small systems of kinetic differential equations may be applied 
provided that (i) there exists a small parameter that multiplies the 
derivative of the corresponding variable, singularly entering into 
the equation, and (ii) the right-hand sides of the differential equations 
corresponding to the intermediates in question should determine 

y

y0

0 x1 x

Figure  2  Schematic phase portrait of two-dimensional differential systems 
containing a small singular parameter e. The directed curve represents a stable 
characteristic curve; the horizontal straight lines with arrows illustrate the 
trajectories in the phase plane at e << 1. Initial conditions: x = 0 and y = y0 at 
t = 0. The image point (x1,y0) is assumed to be close to the characteristic 
curve.
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a stable characteristic curve. The fulfillment of these conditions 
allows to obtain a simple phase portrait (see Figure 2), which helps 
chemists to avoid common misinterpretation and misunderstanding 
of the QSSA.
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