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Last year, the academic community celebrated the 150 anniversary
of the birth of Max Bodenstein and the 125" anniversary of the
birth of Nikolai Semenov, outstanding scientists who made a
great contribution to chemical kinetics. Among other things,
their names are associated with a common method for finding
approximate solutions to systems of kinetic equations, the so-
called quasi-steady-state approximation (QSSA). At the beginning
of the last century, Bodenstein clearly formulated the QSSA for
chemical systems,! and in the 1930s Semenov developed it for
the case of chain reactions.? According to this method, the time
derivatives corresponding to some intermediates are assumed to
be zero during the course of the reaction. This procedure replaces
the differential equations with algebraic ones, simplifying the
mathematical part of the problem.

By and large, the QSSA had a profound and beneficial influence
on the development of chemical kinetics, especially before the
advent of computers in chemical practice, and usually gave
satisfactory results, but as the method became widely used in
chemical practice, difficulties arose so often that it is obvious,
more stringent conditions were required for its applicability. One
of the earliest and best known attempts to justify the QSSA was
made by Frank-Kamenetsky,? who considered a chemical system
about to reach a steady state and found that the lifetime of
intermediates to which the QSSA could be applied, should be
much less than the characteristic reaction time. Rice later came
to the same conclusion.* This criterion did not contradict common
sense and was intuitively understandable. However, later it was
realized® that for the validity of the QSSA, these requirements
are actually necessary conditions rather than sufficient ones, which
are fundamentally required for a logically correct application.

The criteria for using the QSSA are often formulated as
constraints imposed on concentrations: the concentration of the
intermediate in question must be much lower than the concentration
of the reactants. In his classic book,> Hammett articulated this
clearly after considering the mechanism of consecutive first-order
reactions involving only one intermediate and suggesting that
this is also true in the case of more complex kinetic mechanisms.
These criteria, formulated in terms of concentration, are usually
given in up-to-date textbooks on chemical kinetics.”®

Worthy of mention is the work by Benson,1% in which, after
considering several particular kinetic systems that are simple
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enough for an exact solution, he formulated the following conditions
for justifying the QSSA. Namely, the rate of formation of the
intermediate in question should be low compared with the rate of
its removal by other processes. The conditions found this way were
then speculatively extended to the general case that, of course,
cannot be accepted as a rigorous approach. Note that the requirement
for a low concentration of a fast intermediate is virtually equivalent
to Benson’s criterion. In addition, Benson has clearly demonstrated
the existence of an induction period of establishing a steady
state. It is obvious that the shorter the induction period compared
with the characteristic reaction time, the better the approximation
given by the QSSA.

However, in the field of large complex kinetic schemes, the
QSSA could give wrong results. For example, as was shown by
Edelson!! for a mechanism that models the explosion limits of
carbon monoxide—oxygen mixtures and includes twenty four
elementary reactions, the appropriate solution to the corresponding
set of kinetic equations can be found by numerical methods
rather than by the QSSA. The title of the paper by Farrow and
Edelson'? ‘The Steady-State Approximation: Fact or Fiction?’
(with emphasis on the latter) typifies the undeserved consequences
for the reputation of the QSSA, which obviously arose due to the
lack of well-defined mathematical criteria for the use of the QSSA.
It is worth noting that the kinetics of chemical reactions, which
includes some elementary processes, the time scales of which
differ significantly, can be modeled by a set of differential equations,
which are called stiff systems. The direct integration of such systems
by numerical methods usually encountered certain difficulties.™®
Note that the QSSA was in fact intended to deal with stiff systems.
When the stiffness problem has been generally overcome, the QSSA
becomes almost irrelevant, at least for large kinetic systems. This
was dramatized by the fact that in the 1970s interest in the QSSA
began to wane as chemical kinetics fell out fashion.

This disappointment in the QSSA occurred despite the results
obtained two decades earlier by Sayasov and Vasil’eva,’* who
approached the problem of the QSSA using the important
achievement of asymptotic analysis, Tikhonov’s theorem.'®> By
changing the variables in the system of differential equations
corresponding to the general reaction mechanism, which involves
some elementary processes with significantly different time scales,
they transformed it into a set of differential equations, some of
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which contain small parameters multiplying time derivatives.
These are the so-called singularly perturbed equations describing
the behavior of short-lived intermediates. Thus, the use of the QSSA
means zeroing out these small parameters that gives a zero-order
approximation to the exact solution. Sayasov and Vasil”eva showed
that the smallness of these parameters is not sufficient for obtaining a
satisfactory approximation and that the right-hand side of the system
of differential equations must also satisfy some additional conditions
that were not taken into account earlier. Unfortunately, this work
had almost no effect on the state of the art in physical chemistry
at that time, probably because of excessive mathematical rigor.

Almost three decades later, a much more successful introduction
of Tikhonov’s theorem into chemical kinetics was made by
Klonowski,*6 who considered several special cases of relatively
small kinetic systems, in particular the classical Michaelis—Menten
mechanism, as a clear illustration of the use of this mathematical
theory to justify the QSSA. Since that time, Tikhonov’s theorem
has firmly taken its place at the heart of modern studies dealing
with stiff kinetic systems.’

Thus, there exist well-founded criteria for the application of
the QSSA, which remain important primarily from a didactic
point of view, since the widely accepted basic results of chemical
kinetics were obtained by the QSSA long before its proper
justification. In addition, the QSSA is still a working tool in the
study of kinetic mechanisms that involve only a few short-lived
intermediates, while large kinetic systems are usually the subject
of numerical methods.

So, it would seem that the story of developing the concept of
the QSSA was successfully completed. Nevertheless, from time
to time an old misconception appears in the literature, in which
the idea of the QSSA reduces to the requirement that the short-
lived intermediate in question has a rate approximately equal to
zero for a considerable time interval. The purpose of these notes
is to demonstrate that the misconception about the QSSA can be
easily eliminated within the framework that is mathematically
explicitand understandable to chemists with ordinary mathematical
education and is based on the geometric representation of kinetic
differential equations with singular perturbation developed by
Mishchenko and Rozov;'® as an illustration, the Michaelis-Menten
mechanism will be considered.

To begin with, let us consider the following one-dimensional
differential equation with the derivative multiplied by a small
parameter:

8% =f(x), x(0)=x,, ()

where x is a scalar function of time, f(x) is a continuous function
differentiable at all points of the number line, ¢ is positive and small
compared to unit. Being simple and clear, this artificial case has
the main features of real kinetic schemes, to which the QSSA is
applicable.

The geometric representation of the qualitative behavior of
equation (1) is called its phase portrait, which in this case is simply
astraight line (Figure 1), along which the image point representing
equation (1) moves at a velocity f(X)/e.X® The roots of the equation
f(X) = 0 are called fixed points. They completely determine the
nature of the movement of the image point on the phase line, which
obeys equation (1). From the point of view of the QSSA, we are
only interested in one type of fixed points, the so-called attractors,
where the image point remains for all t, once it gets there. Let
X = a> X, be one of the roots, i.e, f(a) = 0. One can specify the
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Figure 1 Phase portrait of a one-dimensional differential equation with an
attractor at x = a and an initial condition xy at t = 0.

conditions under which this point is an attractor. In the neighbor-
hood of x = a,

f() = (x—a)f(@) + o(x - a). O]

So, if f;, <0, then the fixed point x = a is stable. In other words, the
solution of equation (1) x = x(t,e) is close to x =aast - o
assuming that the interval (xy,a) has no other fixed points.

It may take a short time for the phase point to come into the
e-neighborhood of x = a from the point x(0) = Xx,, since at each
point of the x-axis located far enough from the attractor, the phase
velocity f(x)/e can be very large depending on the smallness of ¢.
This time is in fact an induction period followed by a steady state
corresponding to x = a.

Thus, the conditions under which the QSSA may be applied
to equation (1) are as follows. Firstly, the value of ¢ must be small
so that the induction period is short, and secondly, fy(a) < 0,
which ensures that the fixed point will be an attractor.

At present the QSSA is primarily used in the study of small
kinetic schemes, in particular the Michaelis—Menten scheme or
something similar. It is worth noting that such systems are often
encountered in photoreactions involving fast elementary processes.?

Once properly scaled, a reaction involving more than one
step, such as

Reactant < Intermediate < Product, 3)

can be modeled by a set of differential equations in the form

)
dr
o @
— = g(x,y),
a8

where x and y are the scaled concentrations of the intermediate
and reactant, respectively, as scalar functions of time t, while ¢ is
a positive parameter, which is assumed to be small compared to
unity. Initial conditions: x=0andy =y, att=0.
The constrained system that results from system (4) whene =0
is as follows:
0= fx,y),

dy
o = 8y ®)

The conditions, under which the solution of set (5) is a zero-
order approximation to the solution of set (4) as ¢ = 0, actually
determine the validity of the QSSA.

Set (5) is not a normal differential system (the first equation is
algebraic), so there is no solution with an arbitrary initial point,
but only with the point that belongs to the curve f(x,y) = 0.18
Therefore, rigorously speaking, we may directly compare the
solutions of systems (4) and (5) only when the initial points of the
former lie in the neighborhood of the curve. Stiff sets of differential
equations that model the chemical mechanism do not hold because
the initial point of any intermediate is zero and is normally far
from the characteristic curve f(x,y) = 0. Nevertheless, under certain
conditions, an arbitrary trajectory of system (4), starting at the
point (0, Yy), located at a finite distance from the curve, falls into
its vicinity. In the case of a two-dimensional system, its phase
trajectories can be easily represented geometrically, as shown in
Figure 2. At each point of the phase plane (x,y) for system (4),
there is a phase velocity vector:

v(x,y) = [%f (x,y),g(x,y)]. (6)

If the initial point of the phase motion (0,y,) is at a finite
distance from the characteristic curve, then as ¢ - 0 the phase
velocity vector has an infinitely large first component, while
the second component is finite. Therefore, there occurs a
rapid (almost instantaneous) change in the x coordinate, while
the y coordinate remains almost constant, i.e., the trajectory
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Figure 2 Schematic phase portrait of two-dimensional differential systems
containing a small singular parameter . The directed curve represents a stable
characteristic curve; the horizontal straight lines with arrows illustrate the
trajectories in the phase plane at ¢ << 1. Initial conditions: x=0and y =y, at
t = 0. The image point (X;,Yp) is assumed to be close to the characteristic
curve.

of system (4) is close to the trajectory of motion along the
straight line y =y, according to the equation

8% =[xy, @)

Thus, the problem actually reduces to the one-dimensional case
considered above. In terms of the qualitative theory of differential
equations with a small parameter,'® the steady state corresponds
to the slow motion of the phase point along the stable portion of
the curve f(x,y) = 0. By definition, the totality of all points where
of(x,y)/ox < 0 is called a stable portion of the curve. At points
where 0f/0x = 0, the phase point may leave the curve, i.e, the
QSSA cannot be valid.

A highly reactive intermediate can be chosen as the QSSA
variable, provided that the derivative with respect to its concentration
on the right-hand side of the corresponding rate equation is
negative. Upon decaying, the intermediate usually enters into a
monomolecular or bimolecular elementary reaction (or both),
which ensures the appearance of the corresponding negative terms
on the right-hand side and the validity of the QSSA is normally
fulfilled. However, in more complex cases, for example, in chain
reactions, the possibility of the appearance of unstable points of
the characteristic curve must not be ruled out.

By way of illustration, let us consider the classical Michaelis—
Menten mechanism?! for irreversible single-substrate enzymatic
reactions:

k: k:
E+5%ES$E+P, (8)

1

where S is the substrate, E is the enzyme, ES is the complex
between them and P is the product. The differential equations
corresponding to scheme (8) have the form

% = kies— (k_,+ kyc, o)

ds

d—; =—kes+ k_c.
Here e s and c are scalar functions of time denoting the current
concentrations of the enzyme, substrate and complex between
them, respectively. The differential equation for product concentra-
tion can be omitted due to the mass balance equation s+ c+p =g,
where p is the current product concentration and s, is the initial
substrate concentration. Taking into account another mass balance
equation, e + ¢ = gy, where g, is the initial concentration of the
enzyme, we finally obtain the following system of rate equations:

i_j = ke, — ©)s— (k, + ke,
u (10)
T —k(ey—c)s+ k_jc.

There are initial values: s(0) = s, and c(0) = 0.
Introducing the characteristic reaction time v = k;ept, i.e., the
dimensionless time measured during the reaction in units of 1/k; ey,

and dividing both sides of the first equation of system (10) by the
factor (k_; + ky), we obtain

c s
E—=¢gs—&e—Cc—c,

dr €
e ki @y
dr € kleo '

Here & = kiep/(k_y + k) = /Ky, where Ky, = (koy + Ky)/Kk, is the
Michaelis constant. It is entirely possible that the value of ¢
introduced in this way may be small.?

Introducing dimensionless concentrations X = c/ey and y = g/e,
we finally obtain from system (11)

dx
i

12
dy + +k’l 4
— == X X.
dr I ke

0

This scaling of variables is not unique, and its choice can play an
important role in particular cases.??

The parameter ¢ enters the first equation of set (12) both on
the left-hand side (singular perturbation) and on the right-hand
side (regular perturbation), which seems to be a typical feature of
common kinetic schemes.?® Since the QSSA is a zero-order
approximation of singular perturbation, we may keep the parameter
€ on the right-hand side of the equation, so that the constrained
system that results from system (12) is as follows:

0=¢ey—eyx—ux,
dy k_,

—=—y+yx+
dr I ke,

(13)

X.

The conditions under which the solution of system (13) is a zero-
order approximation to the solution of system (12) actually
determine the validity of the QSSA. Itis worth noting that systems (12)
and (13) correspond to systems (4) and (5), respectively.

The characteristic curve is defined by the equation f(x,y) = ey -
- ¢eyx — x =0 and obviously of/ox < 0 for all y > 0, so that the
curve y=x/[e(1 = X)] is stable at all x = 0. The time required for the
phase point to fall into the e-vicinity of the curve determines the
induction period t;, of the establishment of a steady state. It can be
estimated from the first equation of system (12) in the following way:

X

dx

Tin =€ ’ 14
Off)’o —(eyp+ Dx (14)

where the upper limit, x; = eyp/(1 + eyy) — ¢, defines a point on
the straight line y = y, = sy /€, in the e-vicinity of the curve (see
Figure 2). From equation (14), it is easy to obtain

==&

Tin

1
Ty Ine(1+ Syo)' (15)

As mentioned above, in order to be able to apply the QSAR, the
induction period must be significantly less than the characteristic
reaction time, i.e,, in dimensionless form z;, << 1. Equation (15)
was obtained under the assumption that the parameter ¢ is small,
since the value of y, can vary over a wide range. If ey, << 1, then
it follows from equation (15) that 7;, ~ €In(1/yy). In the case of
eYo>> 1,7, =~ (11yp)In(1/e), in other words, 7;, = 0(1) independently
of yo. Thus, in the case of Michaelis—Menten scheme (8) with
particular scaling of variables, a sufficient condition for the validity
of the QSSA is g/ Ky, << 1 in combination with the existence of
a stable characteristic curve.

Generally, the QSSA for finding approximate solutions for
small systems of Kinetic differential equations may be applied
provided that (i) there exists a small parameter that multiplies the
derivative of the corresponding variable, singularly entering into
the equation, and (ii) the right-hand sides of the differential equations
corresponding to the intermediates in question should determine
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a stable characteristic curve. The fulfillment of these conditions
allows to obtain a simple phase portrait (see Figure 2), which helps
chemists to avoid common misinterpretation and misunderstanding
of the QSSA.

This work was supported by the Russian Science Foundation
(grant no. 22-23-00234).
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