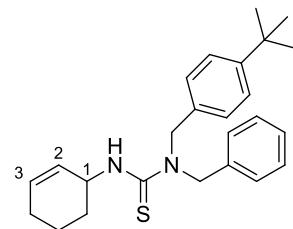


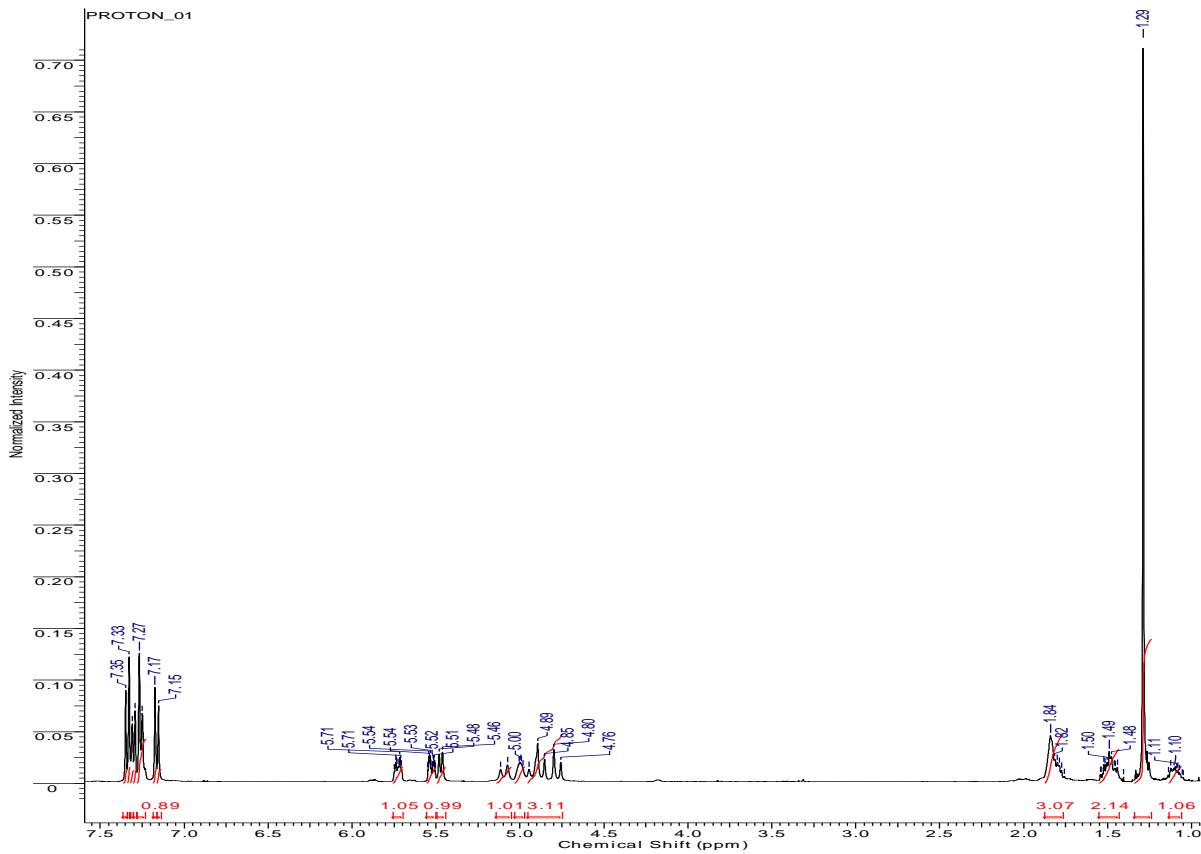
Annulated bicyclic isothioureas: identification of active and selective butyrylcholinesterase inhibitors

Evgeniya V. Nurieva, Alexander A. Alexeev, Nikolay A. Zefirov, Elena R. Milaeva, Nadezhda V. Kovaleva, Alexey N. Proshin, Galina F. Makhaeva and Olga N. Zefirova

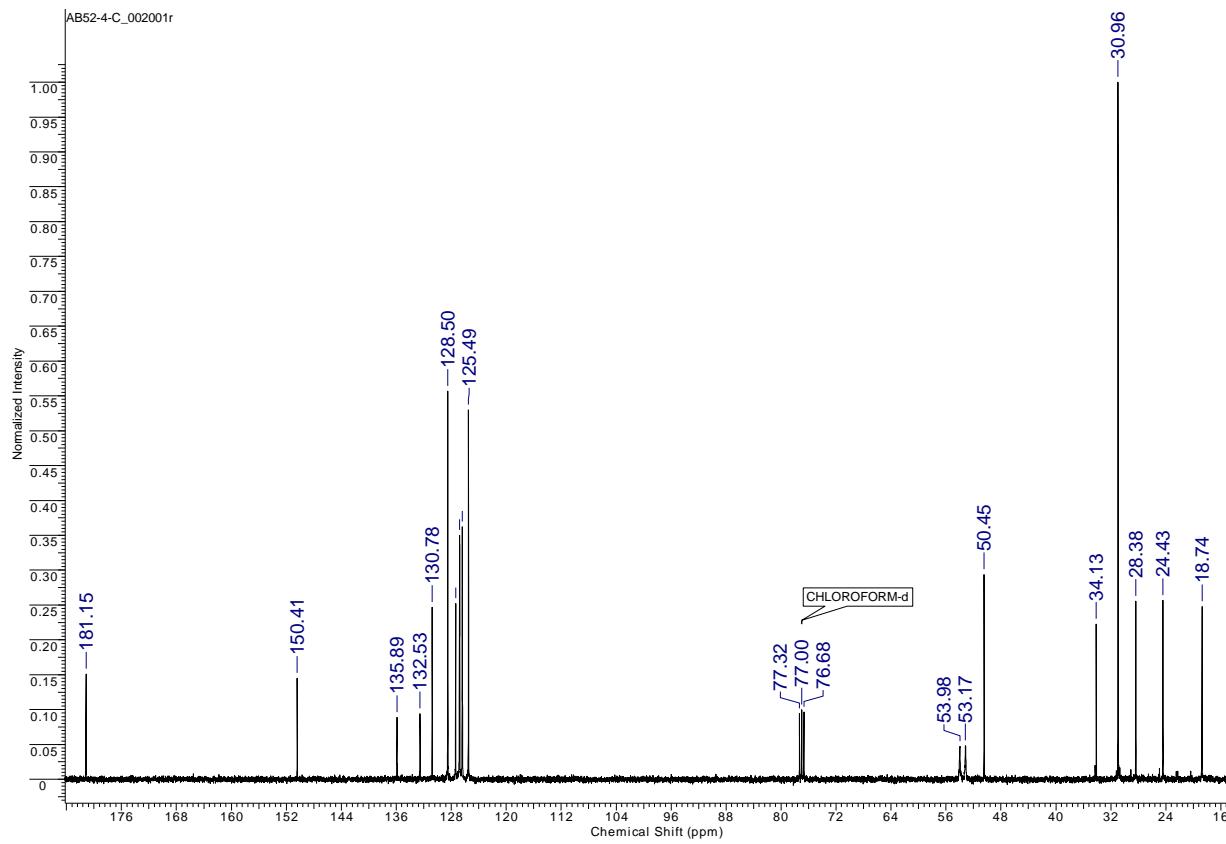
1. Molecular modeling

Computer molecular modeling was performed using 3D model of the active site in butyrylcholinesterase (PDB ID: 6R6W). All compounds used for X-ray of the protein and all water molecules were previously excluded from the model (other molecules and ions at the interface of α - and β -subunits of the protein were maintained). Atomic charges of protein amino acids were assigned by standard Kollman method using AutoDock Tools 1.5.6. 2D structures of the ligands were converted to the 3D structures and were submitted to a conformational MMFF Amber ff14SB optimization using Gasteiger charges in UCSF Chimera 1.15 program [S1]. Docking procedure was performed with AutoDock Vina 1.1.2 software [S2] (grid box $16.5\text{\AA} \times 16.5\text{\AA} \times 16.5\text{\AA}$, grid center size $x=135.446\text{\AA}$, $y=110.001\text{\AA}$, $z=39.873\text{\AA}$, energy range=4, exhaustiveness=20). Complexes with the best values of scoring functions were selected and visualized using UCSF Chimera 1.15 software. The position of N^+ exocyclic protonated form of (3aS,8aR)-isomer of compound **7c** in the complex with hBChE is shown at the picture.

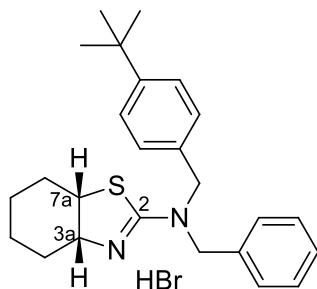

2. Chemistry


All starting materials, reagents and solvents were purchased as high-grade commercial products and used without further purification. 3-Isothiocyanatocyclohex-1-ene was prepared from 3-bromocyclohex-1-ene by literature procedure [S3]. *N*-Benzyl-*N*-(4-*tert*-butylbenzyl)amine was kindly provided by Alexey N. Proshin (IPAC RAS). Reactions sensitive to moisture and/or oxygen were carried out under an inert atmosphere of anhydrous argon. Liquid column chromatography was performed using silica gel Acros (40–60 μm). Thin-layer chromatography (TLC) was performed on Silufol-UV254 silica gel sheets, and spots were visualized with UV light ($\lambda = 254\text{ nm}$) or stained with

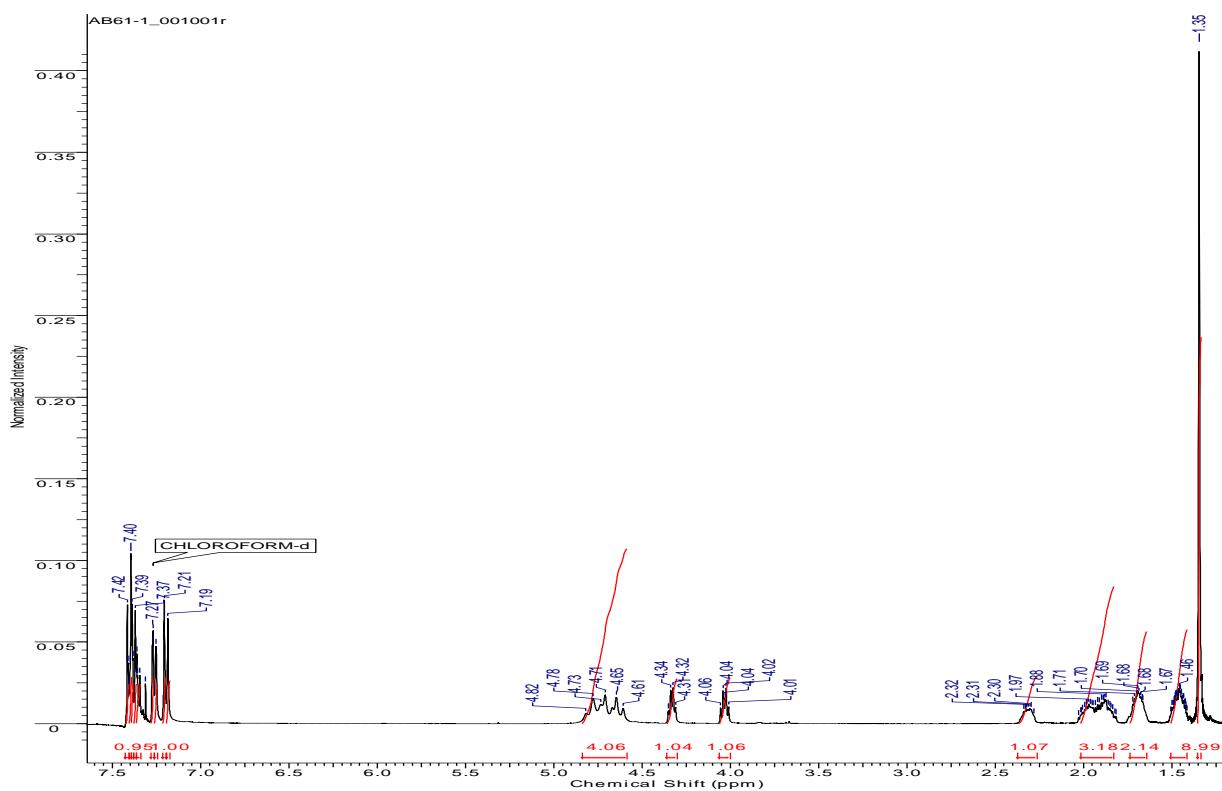
iodine vapor or aqueous potassium permanganate solution. ^1H and ^{13}C NMR spectra were recorded on Bruker Avance 400/Agilent 400-MR spectrometer at 27 °C in CDCl_3 at 400 and 100 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) referenced to residual protonated solvent peak (CDCl_3 , $\delta = 7.27$ for ^1H NMR) or to carbon resonances in the NMR solvent (CDCl_3 , $\delta = 77.0$ for ^{13}C NMR). Melting points were determined using a capillary melting point apparatus and were uncorrected. MS spectra were recorded on a system consisting of a liquid chromatograph Agilent 1100 Series, mass spectrometer Agilent Technologies LC/MSD VL (electrospray ionization), detector Sedex 75 ELSD (positive ion mode).


1-Benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohex-2-en-1-yl)thiourea (4b). 3-Isothiocyanatocyclohex-1-ene [S3] (0.565 ml, 4.34 mmol, 1 equiv.) dissolved in CH_2Cl_2 (10 ml) was treated with *N,N*-diisopropyl-*N*-ethylamine (DIPEA) (1.52 ml, 8.74 mmol, 2 equiv.) and *N*-benzyl-*N*-(4-*tert*-butylbenzyl)amine (1.1 g, 4.35 mmol, 1 equiv.). The reaction mixture was stirred overnight at room temperature, concentrated and purified by column chromatography (eluent: 1:10 ethyl acetate : hexane by v/v) to give **4b** as colorless oil (1.7 g, yield 99%).

^1H NMR (δ , CDCl_3): 1.05 – 1.15 (m, 1H), 1.29 (s, 9H, *t*-Bu), 1.41 – 1.54 (m, 2H), 1.76 – 1.88 (m, 3H), 4.78 (d, 1H, $J = 16.3$ Hz, NCH_2Ph), 4.87 (d, 1H, $J = 16.3$ Hz, NCH_2Ph), 4.92 (d, 1H, $J = 16.1$ Hz, NCH_2Ar), 5.00 (m, 1H, H^1), 5.09 (d, 1H, $J = 16.1$ Hz, NCH_2Ar), 5.47 (d, 1H, $J = 7.9$ Hz, NH), 5.53 (ddt, 1H, $J = 9.9, 3.9, 2.0$ Hz, H^2), 5.72 (m, 1H, $J = 9.9, 3.6, 1.7$ Hz, H^3), 7.16 (d, $J = 8.3$ Hz, 2H, H^{Ar}), 7.23 – 7.27 (m, 3H, H^{Ar}), 7.30 (d, $J = 7.0$ Hz, 2H, H^{Ar}), 7.34 (d, $J = 8.3$ Hz, 2H, H^{Ar}).



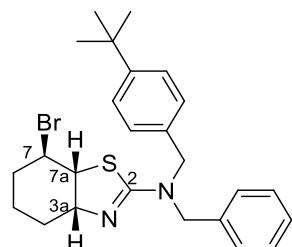
^{13}C NMR (δ , CDCl_3): 18.7 (C^5), 24.4 (C^4), 28.4 (C^6), 31.0 ($\text{C}(\text{CH}_3)_3$), 34.1 ($\text{C}(\text{CH}_3)_3$), 50.5 (C^1), 53.2 (NCH_2), 54.0 (NCH_2), 125.5, 126.4, 126.8, 126.8, 127.4, 128.5, 130.8, 132.5, 135.9, 150.4, 181.1 ($\text{C}=\text{S}$).



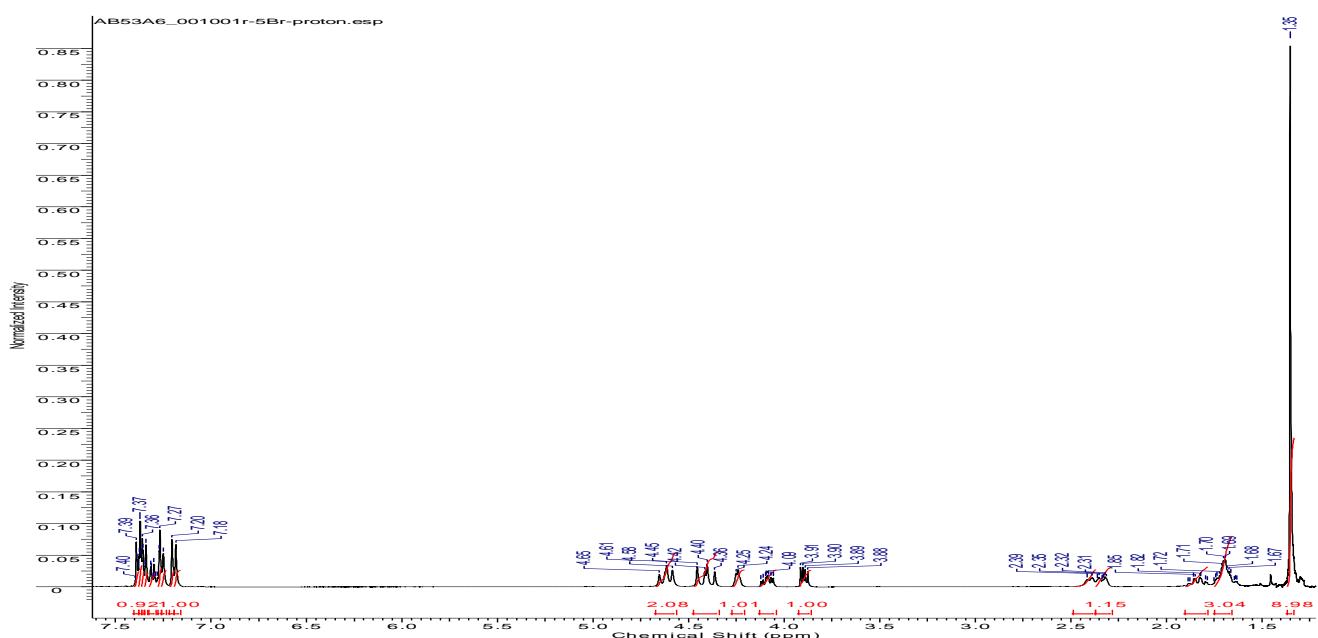
(\pm)-(3a*R*,7a*S*)-*N*-(4-*tert*-butylbenzyl)-3*a*,4,5,6,7,7*a*-hexahydrobenzo[*d*]thiazol-2-amine

hydrobromide (7b). A solution of acetyl bromide (37 μ l, 0.5 mmol, 3 equiv.) in CH_2Cl_2 (5 ml) was treated with methanol (20 μ l, 0.5 mmol, 3 equiv.) and stirred at room temperature in darkness. In 10 min, a solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohex-2-en-1-yl)thiourea (4b)** (65 mg, 0.165 mmol, 3 equiv.) in CH_2Cl_2 (5 ml) was added, and stirring was continued for 12 h. The reaction mixture was concentrated and the residue purified by column chromatography (eluent: CH_2Cl_2 , then 3% methanol in CH_2Cl_2) to yield **(\pm)-(3a*R*,7a*S*)-*N*-benzyl-*N*-(4-*tert*-butylbenzyl)-2-aminohexahydrobenzo[*d*]thiazol-2-amine hydrobromide (7b)** as white solid 171 $^{\circ}\text{C}$.

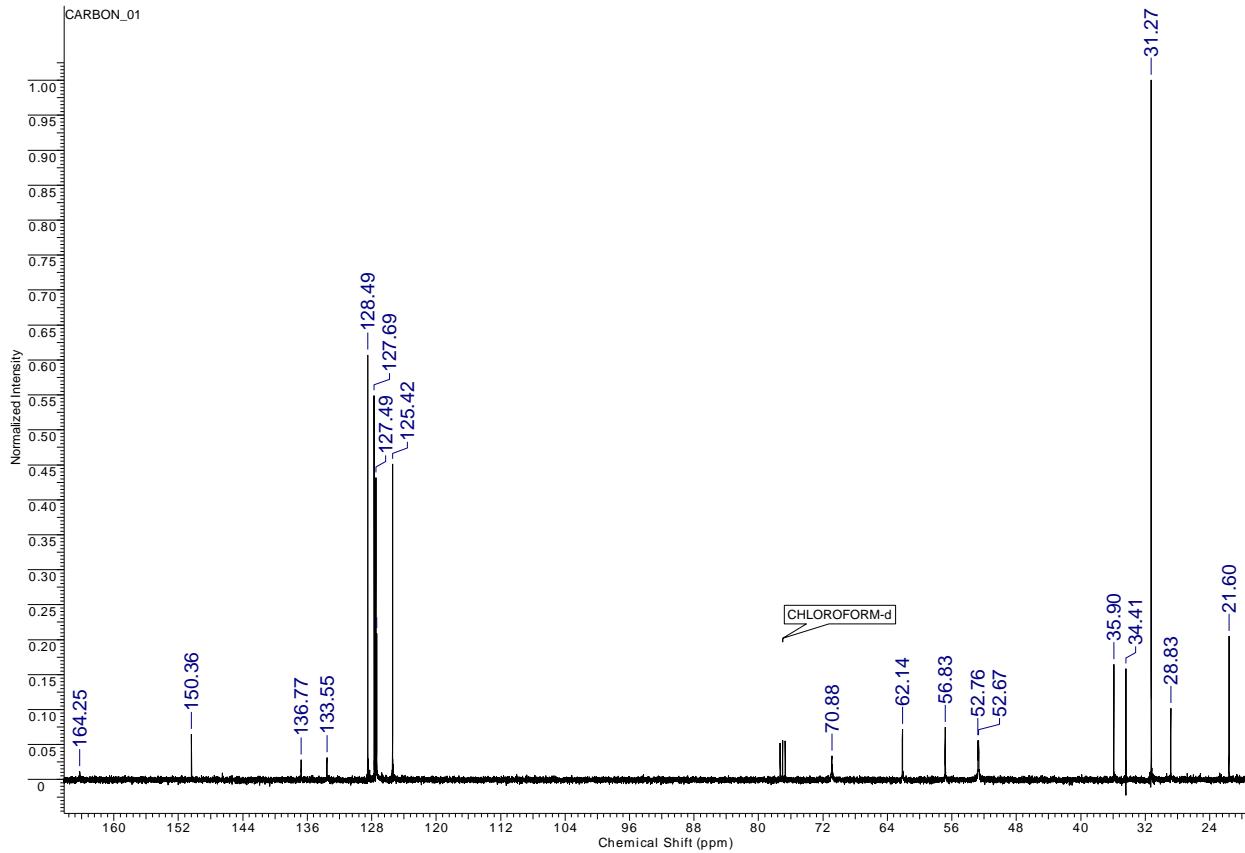
¹H NMR (δ , CDCl₃): 1.35 (s, 9H, *t*-Bu), 1.41 – 1.51 (m, 2H), 1.64 – 1.74 (m, 2H), 1.83–2.03 (m, 3H), 2.26 – 2.37 (m, 1H), 4.04 (dt, 1H, *J* = 7.4, 5.4 Hz, H^{7a}), 4.33 (dt, 1H, *J* = 5.6, 5.4 Hz, H^{3a}), 4.63 (d, 1H, *J* = 15.8 Hz, NCH₂Ar), 4.69 (d, 1H, *J* = 16.9 Hz, NCH₂Ph), 4.75 (d, 1H, *J* = 16.9 Hz, NCH₂Ph), 4.80 (d, 1H, *J* = 15.8 Hz, NCH₂Ar), 7.20 (d, *J* = 8.2 Hz, 2H, H^{Ar}), 7.27 (d, *J* = 8.0 Hz, 2H, H^{Ar}), 7.35 – 7.42 (m, 5H, H^{Ar}).



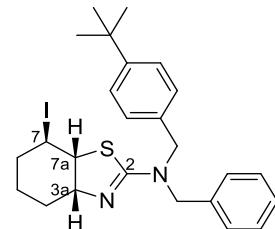
¹³C NMR (δ , CDCl₃): 20.8, 22.2, 27.9, 28.7, 31.1 (C(CH₃)₃), 34.5 (C(CH₃)₃), 50.7 (C^{7a}), 54.5 (NCH₂Ar+ NCH₂Ph), 65.0 (C^{3a}), 125.8 (C^{3,5-Ar}), 127.6, 127.8, 128.1, 128.8 (C^{3,5-Ph}), 131.1, 134.4, 151.3, 169.0 (C²).



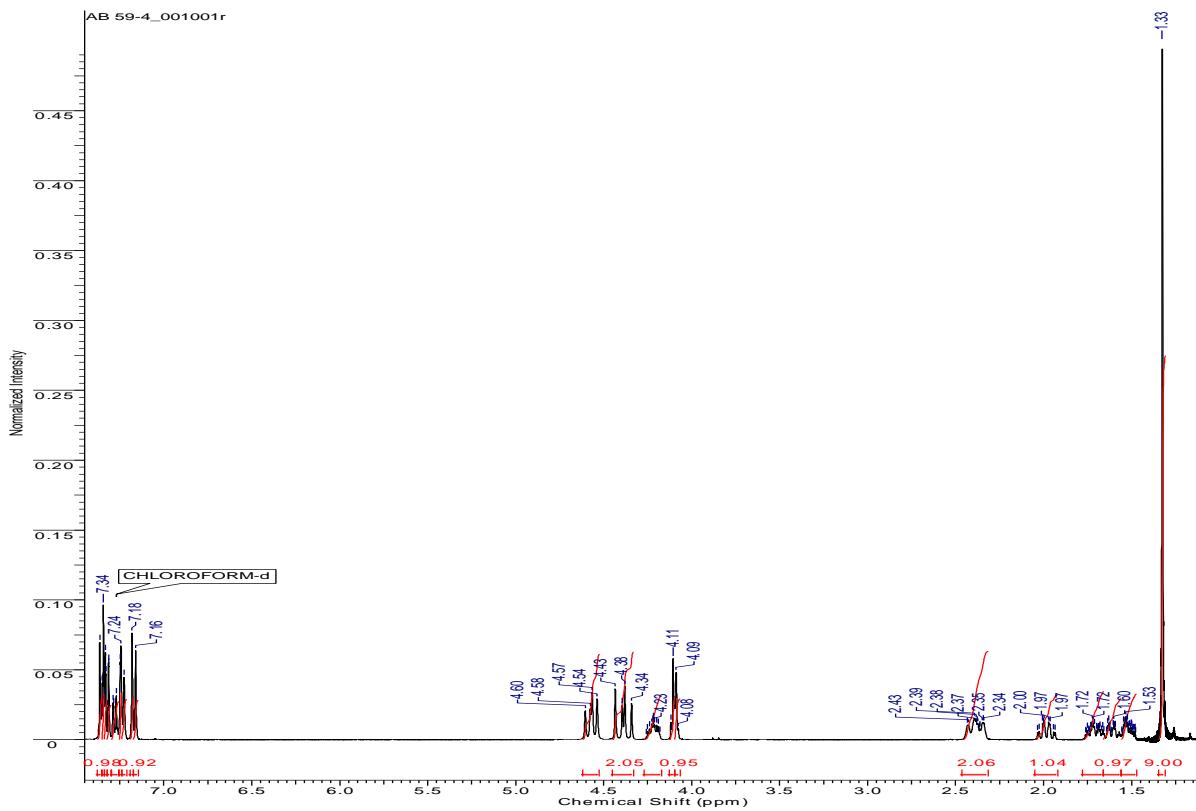
MS (ESI), m/z : 393 $[\text{M}+\text{H}]^+$.


(±)-(3a*R*,7*R*,7*aR*)-*N*-Benzyl-7-bromo-*N*-(4-*tert*-butylbenzyl)-3*a*,4,5,6,7,7*a*-hexahydrobenzo[*d*]-thiazol-2-amine (5b). A solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohex-2-en-1-yl)thiourea (4b)** (416 mg, 1.06 mmol, 1 equiv.) in CH₂Cl₂ (10 ml) was treated with Br₂ (55 µl, 1.06 mmol, 1 equiv.) and stirred in the dark at room temperature for 12 h. The reaction mixture was washed with aqueous saturated solution of Na₂SO₃ (3x20ml) and NaHCO₃ (3x10ml). The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography (eluent: 2% methanol in CH₂Cl₂) to yield **(±)-(3a*R*,7*R*,7*aR*)-*N*-benzyl-7-bromo-*N*-(4-*tert*-butylbenzyl)-3*a*,4,5,6,7,7*a*-hexahydrobenzo[*d*]-thiazol-2-amine (5b)** as colorless oil (386 mg, 77%).

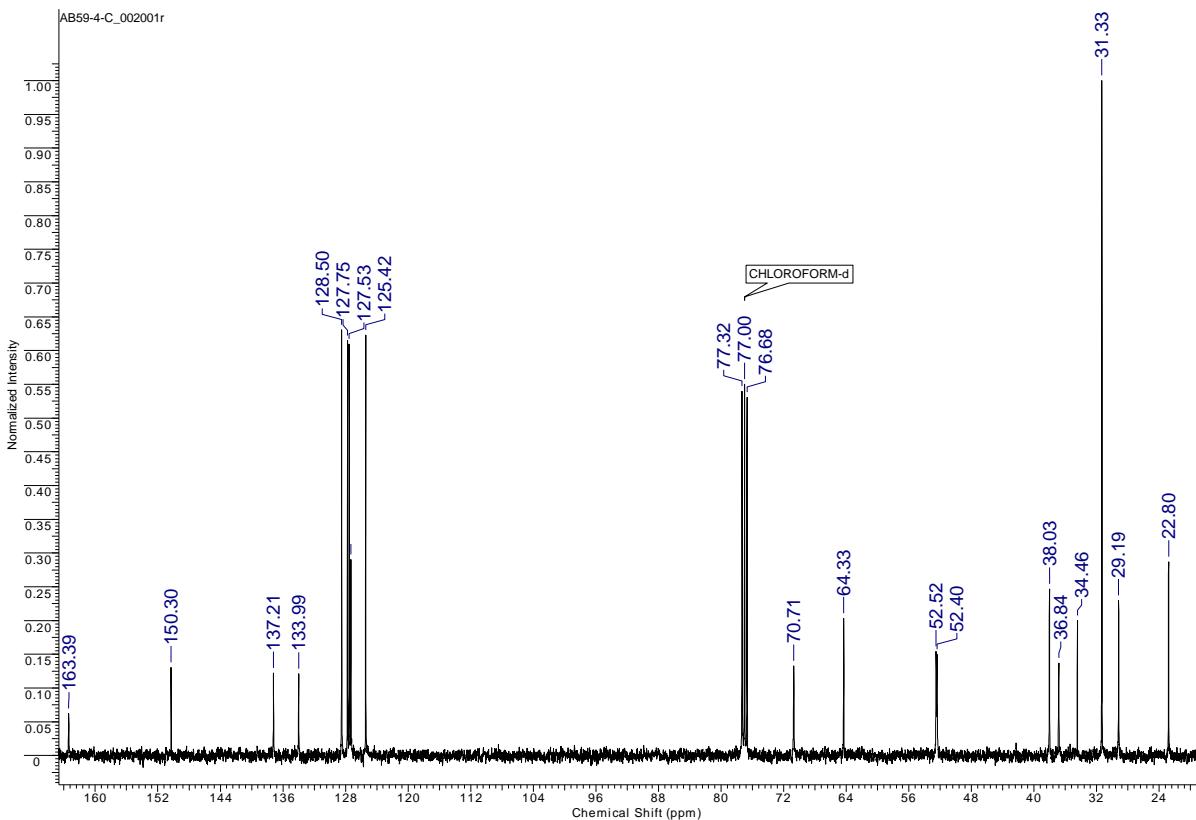
¹H NMR (δ , CDCl₃): 1.35 (s, 9H, *t*-Bu), 1.66 – 1.74 (m, 3H), 1.79–1.89 (m, 1H), 2.30 – 2.36 (m, 1H), 2.37 – 2.45 (m, 1H), 3.89 (dd, 1H, *J* = 9.8, 5.4 Hz, H^{7a}), 4.09 (ddd, 1H, *J* = 11.5, 9.8, 4.1 Hz, H⁷), 4.24 (m, 1H, *J* = 4.1 Hz, H^{3a}), 4.38 (d, 1H, *J* = 15.8 Hz, NCH₂Ph), 4.43 (d, 1H, *J* = 15.8 Hz, NCH₂Ph), 4.59 (d, 1H, *J* = 11.7 Hz, NCH₂Ar), 4.63 (d, 1H, *J* = 11.7 Hz, NCH₂Ar), 7.19 (d, *J* = 8.4 Hz, 2H, H^{Ar}), 7.26 (d, *J* = 7.8 Hz, 2H, H^{Ar}), 7.30 (d, *J* = 7.1 Hz, 1H, H^{Ar}), 7.34 – 7.39 (m, 4H, H^{Ar}).



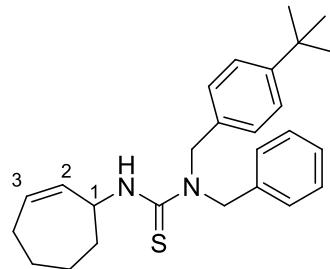
¹³C NMR (δ , CDCl₃): 21.6 (C⁵), 28.8 (C⁴), 31.3 (C(CH₃)₃), 34.4 (C(CH₃)₃), 35.9 (C⁶), 52.7 (NCH₂Ar¹), 52.8 (NCH₂Ar²), 56.8 (C^{7a}), 62.1 (C⁷), 70.9 (C^{3a}), 125.4 (C^{3,5-Ar}), 127.4, 127.5, 127.7, 128.5 (C^{3,5-Ph}), 133.6, 136.8, 150.4, 164.3(C²).



MS (ESI), m/z: 471 [M+H]⁺ / 473 [M+2+H]⁺.

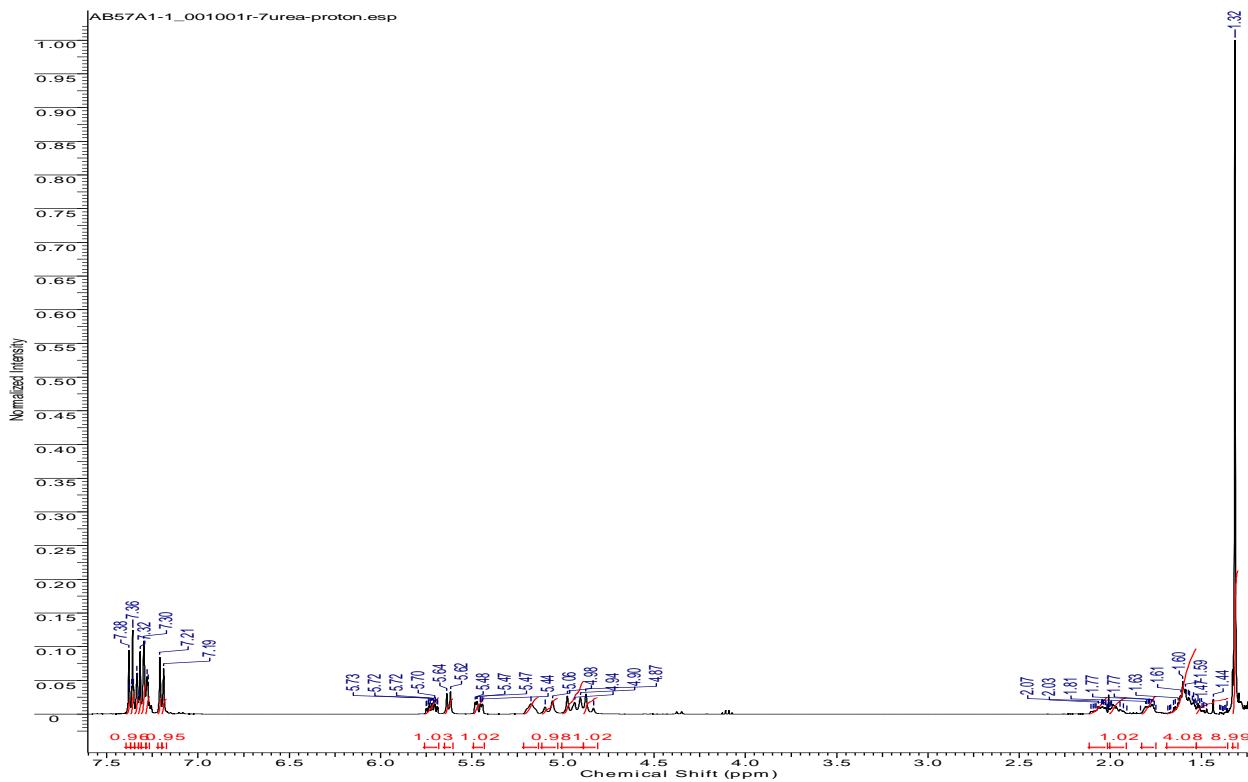

(\pm)-(3a*R*,7*R*,7a*R*)-N-Benzyl-*N*-(4-*tert*-butylbenzyl)-7-iodo-3a,4,5,6,7,7a-hexahydrobenzo[*d*]-thiazol-2-amine (6b). A solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohex-2-en-1-yl)thiourea (4b)** (96 mg, 0.244 mmol, 1 equiv.) in CH₂Cl₂ (5 ml) was treated with I₂ (62 mg, 0.244 mmol, 1 equiv.). The reaction mixture was stirred at room temperature for 12 h, then was washed with aqueous saturated solution of Na₂SO₃ (3x10ml) and NaHCO₃ (3x10ml). The organic layer was dried over Na₂SO₄, concentrated and purified by column chromatography (eluent: CH₂Cl₂) to yield (\pm)-**(3a*R*,7*R*,7a*R*)-N-benzyl-*N*-(4-*tert*-butylbenzyl)-7-iodo-3a,4,5,6,7,7a-hexahydrobenzo[*d*]thiazol-2-amine (6b)** as colorless oil (125 mg, 99%).

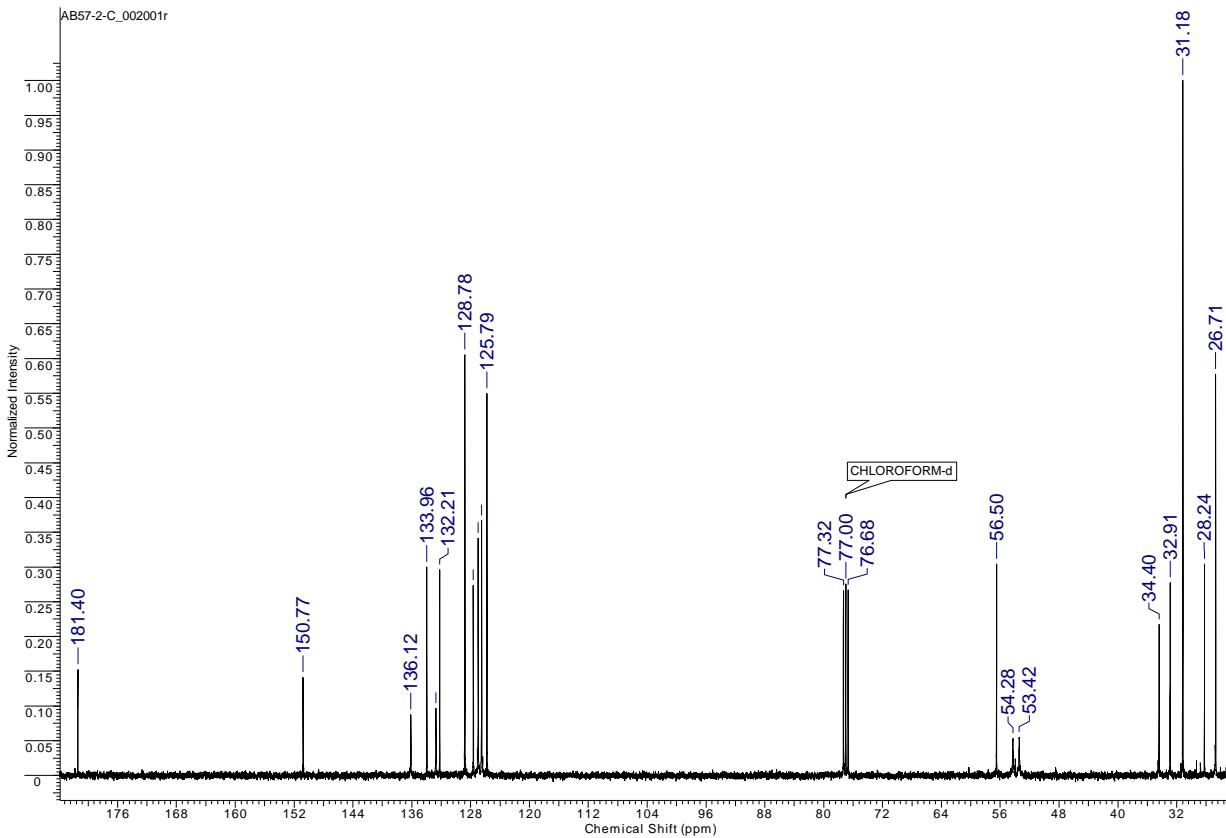
¹H NMR (δ , CDCl₃): 1.33 (s, 9H, *t*-Bu), 1.48 – 1.58 (m, 1H), 1.60 – 1.65 (m, 1H), 1.66-1.77 (m, 1H), 1.94 – 2.04 (m, 1H), 2.34 – 2.44 (m, 2H), 4.08 – 4.12 (m, 2H, H^{7a}+H^{3a}), 4.22 (m, 1H, *J* = 11.9, 4.6, 2.7 Hz, H⁷), 4.36 (d, 1H, *J* = 15.8 Hz, NCH₂Ph), 4.41 (d, 1H, *J* = 15.8 Hz, NCH₂Ph), 4.55 (d, 1H, *J* = 11.3 Hz, NCH₂Ar), 4.59 (d, 1H, *J* = 11.3 Hz, NCH₂Ar), 7.17 (d, *J* = 8.3 Hz, 2H, H^{Ar}), 7.24 (m, *J* = 8.3, 1.3 Hz, 2H, H^{Ar}), 7.28 (m, *J* = 7.3 Hz, 1H, H^{Ar}), 7.33 (m, 1H, *J* = 7.3 Hz, 2H, H^{Ar}), 7.36 (m, 1H, *J* = 8.3 Hz, 2H, H^{Ar}).



^{13}C NMR (δ , CDCl_3): 22.8 (C^5), 29.2 (C^4), 31.3 ($\text{C}(\text{CH}_3)_3$), 34.5 ($\text{C}(\text{CH}_3)_3$), 36.8 (C^7), 38.0, 52.4 (NCH_2Ar^1), 52.5 (NCH_2Ar^2), 64.3 ($\text{C}^{7\text{a}}$), 70.7 ($\text{C}^{3\text{a}}$), 125.4 ($\text{C}^{3,5\text{-Ar}}$), 127.3, 127.5, 127.8, 128.5, 134.0, 137.2, 150.3, 163.4.

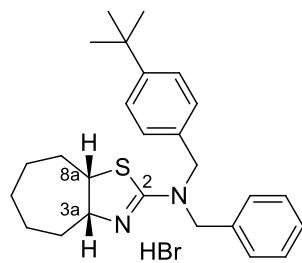
MS (ESI), m/z : 519 $[\text{M}+\text{H}]^+$.


1-Benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohept-2-en-1-yl)thiourea (4c). Cycloheptene (2.43 ml, 20.8 mmol, 2 equiv.) dissolved in CCl_4 (10 ml) was treated at stirring with *N*-bromosuccinimide (NBS) (1.85 g, 10.4 mmol, 1 equiv.) and azobisisobutyronitrile (AIBN) (2 mg, 10.4 mmol, cat. equiv.). The reaction mixture was refluxed for 1.5 h, then cooled to 0°C, after that was filtered, the filtrate was washed with CCl_4 (5 ml). The control of reaction was carried out by ^1H NMR of the reaction mass. ^1H NMR (δ , CDCl_3): 1.78 – 1.92 (m, 3H), 1.99–2.08 (m, 2H), 2.16–2.22 (m, 1H), 2.23 – 2.28 (m, 2H), 4.93 (td, 1H, J = 6.5, 2.3 Hz, H^3), 5.83 (dt, 1H, J = 11.4, 5.7 Hz, H^1), 5.92 (m, 1H, J = 11.4, 6.3 Hz, H^2).

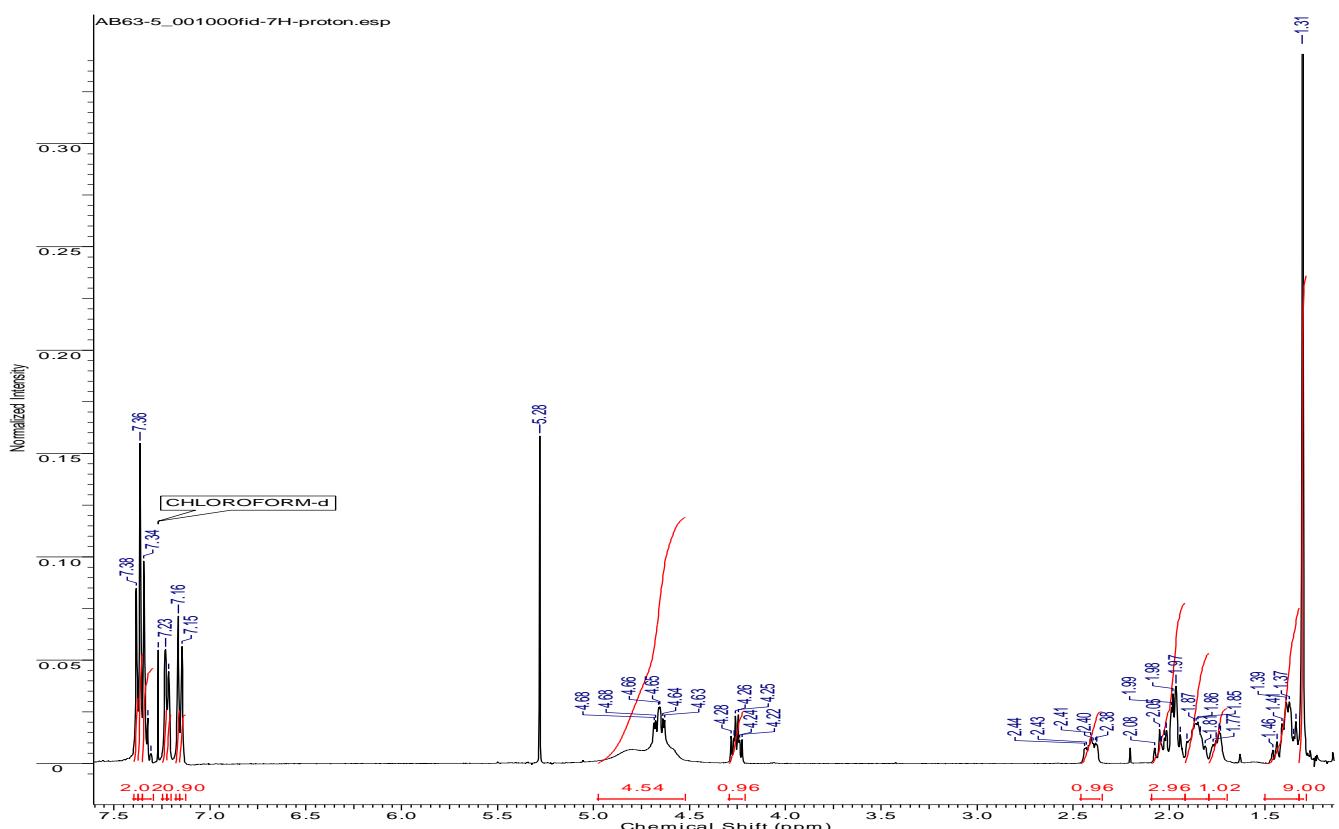

A solution of **3-bromocyclohep-1-ene** in CCl_4 was treated dropwise with solution of **potassium thiocyanate** (1.0 g, 10.4 mmol, 1 equiv.) in absolute MeOH (5 ml) at ice cooling, and was stirred at room temperature for 2 h, followed by filtration thought SiO_2 and washing with hexane (20 ml). The solution of **3-isothiocyanatocyclohep-1-ene** was used directly for the next step without evaporation and further purification. The control of reaction was carried out by ^1H NMR analysis of the reaction solution. The presence of resonance signal at 4.40 ppm (m, 1H, J = 9.5, 1.9 Hz) instead of 4.93 ppm confirms the conversion of bromide into isothiocyanate.

3-Isothiocyanatocyclohep-1-ene solution obtained from the previous step was treated with DIPEA (3.6 ml, 20.8 mmol, 2 equiv.) and ***N*-benzyl-*N*-(4-*tert*-butylbenzyl)amine** (2.6 g, 10.4 mmol, 1 equiv). The reaction mixture was stirred overnight at room temperature, concentrated under reduced pressure and purified by column chromatography on SiO_2 (eluent: CHCl_3 , then 2% methanol in CHCl_3) to give **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohept-2-en-1-yl)thiourea (4c)** as colorless amorphous substance (2.3 g, summary yield from 3 steps 54%). M.p. 87–89 °C.

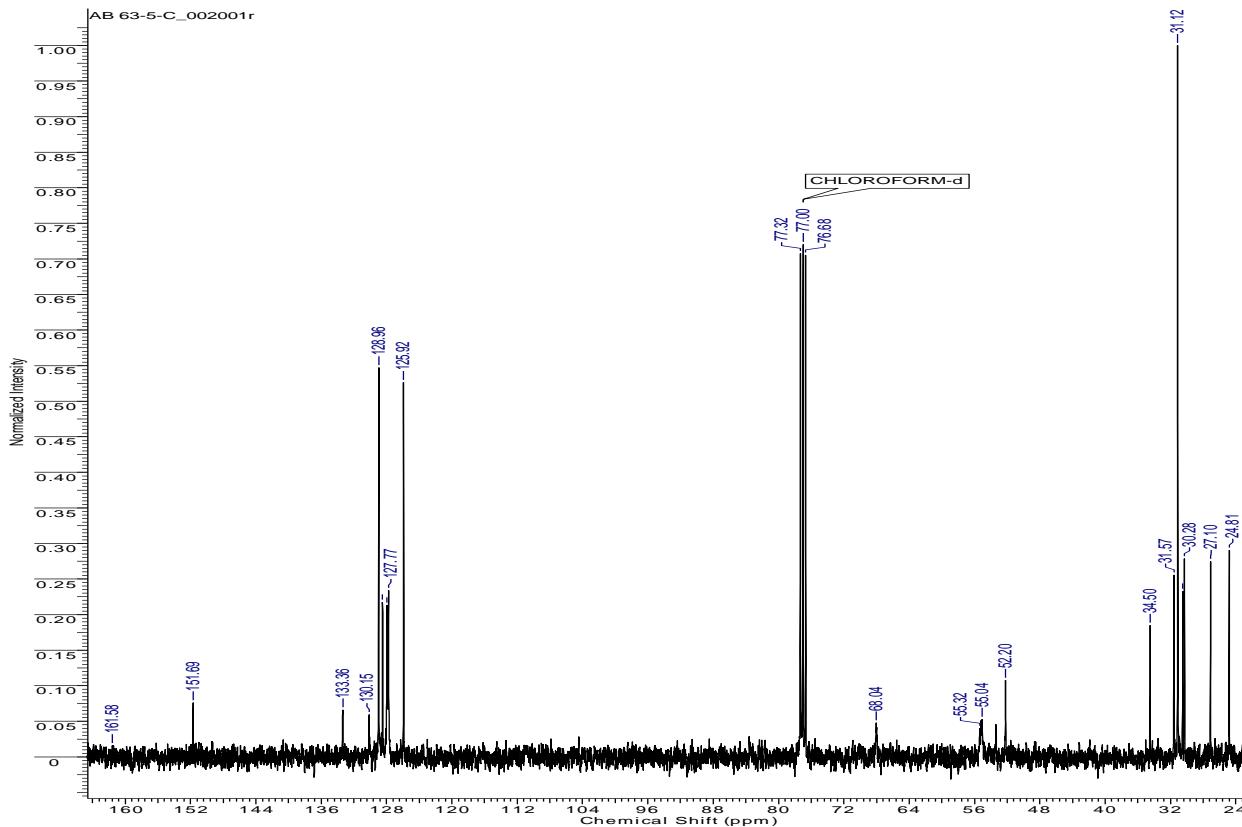
^1H NMR (δ , CDCl_3): 1.32 (s, 9H, *t*-Bu), 1.45 – 1.54 (m, 1H), 1.54 – 1.69 (m, 4H), 1.75 – 1.83 (m, 1H), 1.91 – 2.00 (m, 1H), 2.02 – 2.12 (m, 1H), 4.85 (d, 1H, J = 16.3 Hz, NCH_2Ph), 4.92 (d, 1H, J = 12.5 Hz, NCH_2Ar), 4.96 (d, 1H, J = 12.5 Hz, NCH_2Ar), 5.08 (d, 1H, J = 16.3 Hz, NCH_2Ph), 5.18 (m, 1H, J = 9.7 Hz, H^1), 5.46 (m, J = 11.5, 3.7 Hz, H^2), 5.63 (d, 1H, NH), 5.72 (m, 1H, J = 11.5, 7.1, 5.3, 2.0 Hz, H^3), 7.20 (d, J = 8.3 Hz, 2H, H^{Ar}), 7.28 – 7.31 (m, 3H, H^{Ar}), 7.33–7.38 (m, 4H, H^{Ar}).



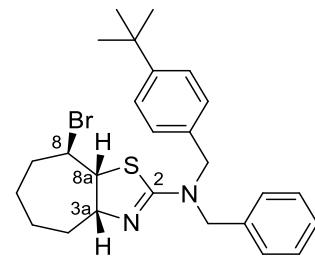
¹³C NMR (δ , CDCl₃): 26.7, 28.2, 31.2 (C(CH₃)₃), 32.9, 34.4 (C(CH₃)₃), 53.4 (NCH₂Ar), 54.3 (NCH₂Ph), 56.5 (C¹), 125.8 (C^{3,5-Ar}), 126.5, 127.0, 127.6, 128.8, 132.2, 132.7, 134.0, 136.1, 150.8, 181.4 (C=S).



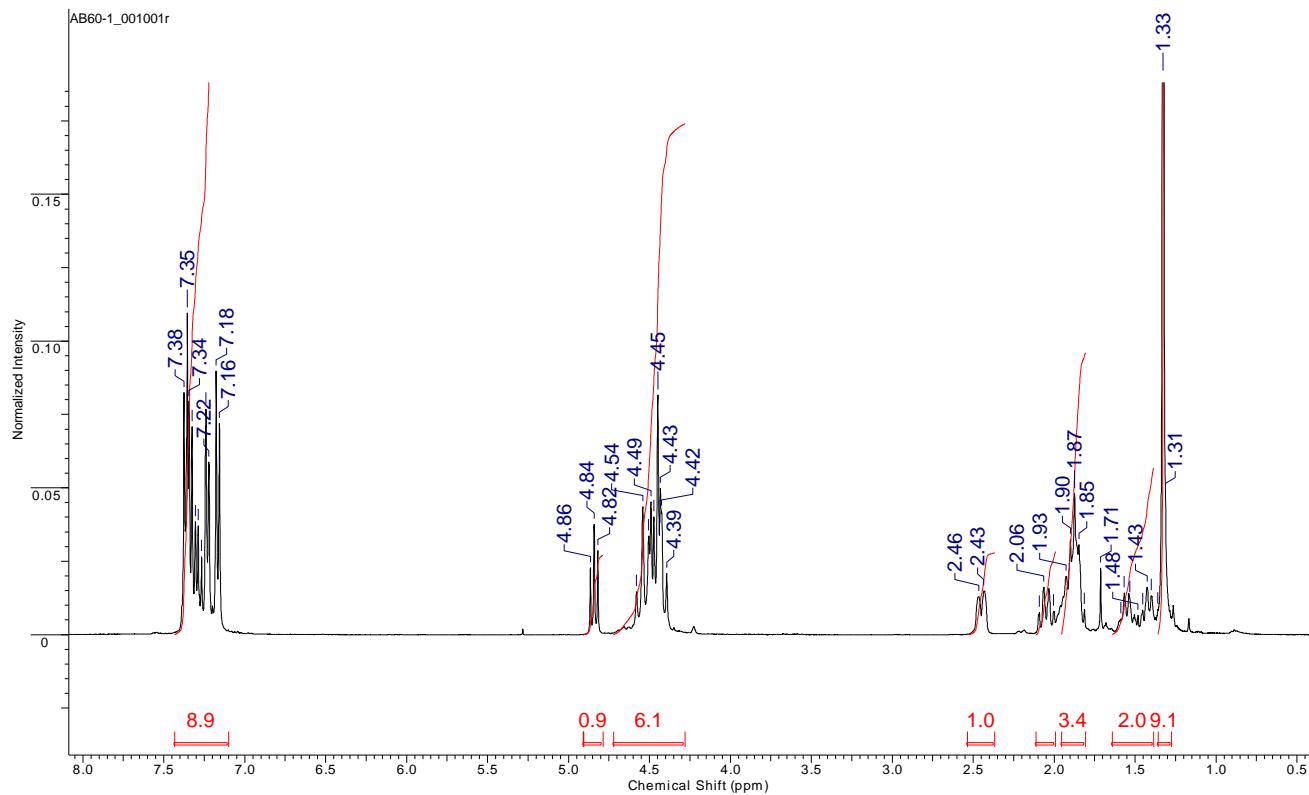
MS ESI, m/z: 407 [M+H]⁺.


(±)-(3aR,8aS)-N-Benzyl-N-(4-*tert*-butylbenzyl)-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta[d]thiazol-2-amine hydrobromide (7c). A solution of acetyl bromide (82 µl, 1.1 mmol, 3 equiv.) in CH₂Cl₂ (5 ml) was treated with methanol (45 µl, 1.1 mmol, 3 equiv.) and stirred at room temperature in the dark. In 10 min a solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohept-2-en-1-yl)thiourea (4c)** (150 mg, 0.37 mmol) in CH₂Cl₂ (5 ml) was added and stirring was continued for 12 h. The reaction mixture was concentrated and the residue purified by column chromatography (eluent: ethyl acetate, then CH₂Cl₂) to yield **(±)-(3aR,8aS)-N-benzyl-N-(4-*tert*-butylbenzyl)-4,5,6,7,8,8a-hexahydro-3aH-cyclohepta[d]thiazol-2-amine hydrobromide** as light yellow oil (150 mg, yield 83%).

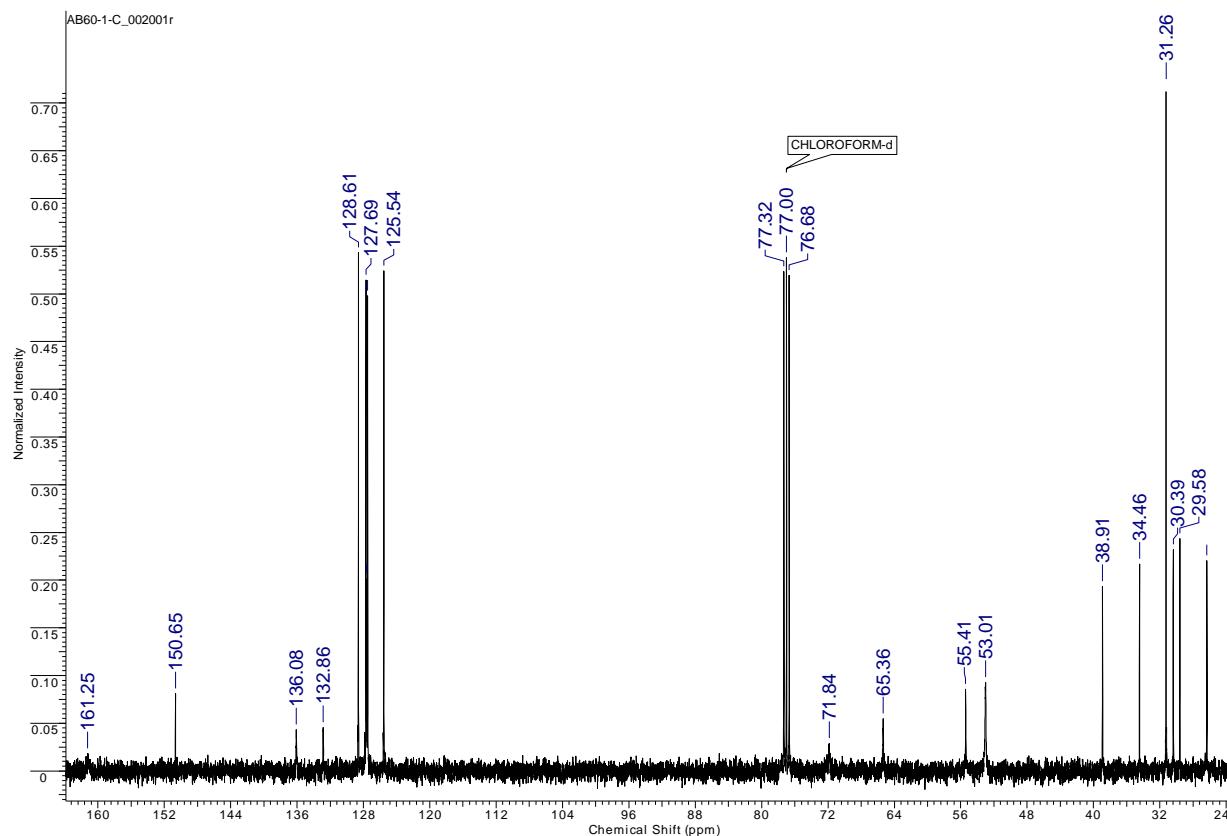
¹H NMR (δ , CDCl₃): 1.31 (s, 9H, *t*-Bu), 1.32 – 1.46 (m, 3H), 1.70 – 1.78 (m, 1H), 1.81 – 1.91 (m, 2H), 1.94 – 2.08 (m, 3H), 2.38 – 2.44 (m, 1H), 4.25 (td, 1H, *J* = 8.8, 5.9 Hz, H^{8a}), 4.55 – 4.91 (br m, 4H, NCH₂Ar+ NCH₂Ph), 4.65 (m, 1H, *J* = 12.3, 8.8, 2.3 Hz, H^{3a}), 7.15 (d, *J* = 8.1 Hz, 2H, H^{Ar}), 7.22 (d, *J* = 6.4 Hz, 2H, H^{Ar}), 7.29 – 7.38 (m, 5H, H^{Ar}).



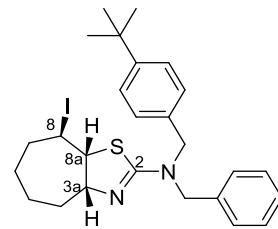
¹³C NMR (δ , CDCl₃): 24.8, 27.1, 30.3, 30.5, 31.1 (C(CH₃)₃), 31.6, 34.5 (C(CH₃)₃), 52.2 (C^{8a}), 55.0 (NCH₂Ar), 55.3 (NCH₂Ph), 68.0 (C^{3a}), 125.9 (C^{3,5-Ar}), 127.8, 127.9, 128.5, 129.0 (C^{3,5-Ph}), 130.2, 133.4, 151.7, 161.6 (C²).



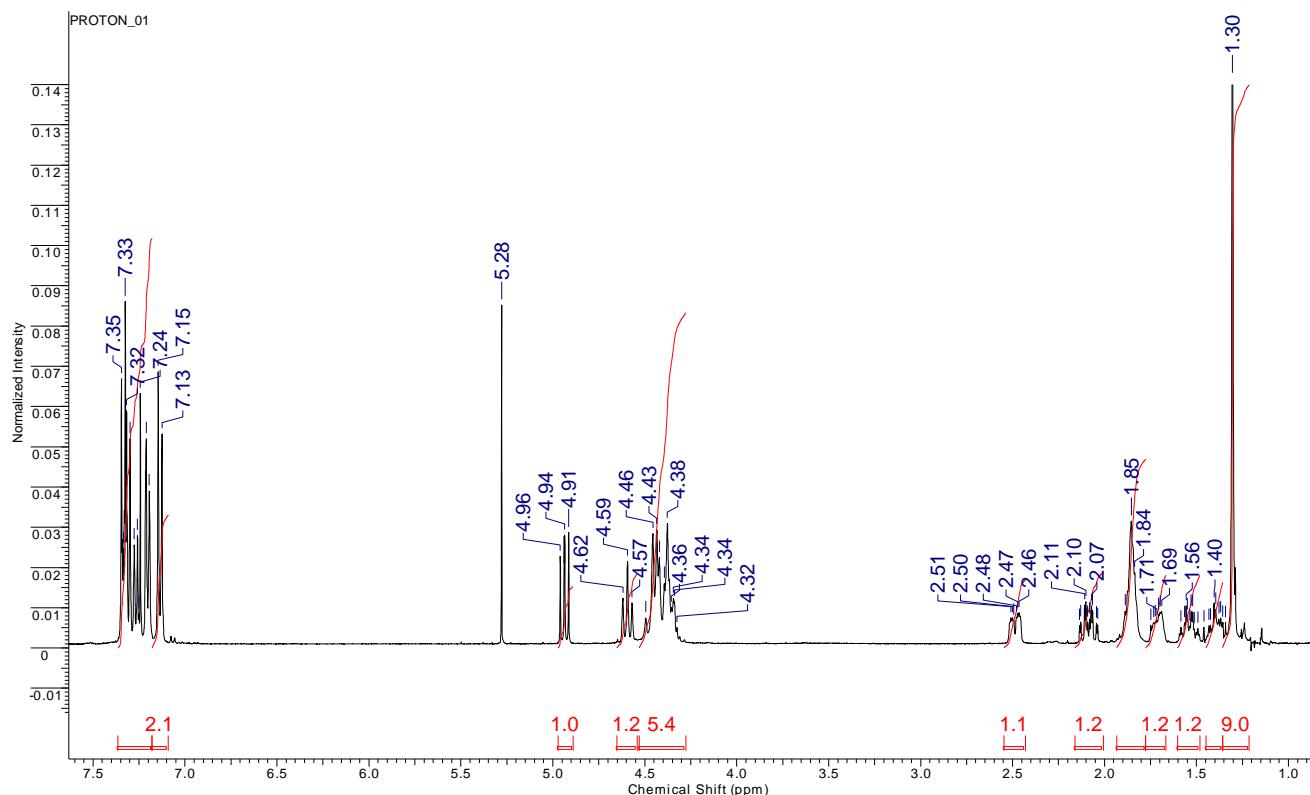
MS ESI, m/z: 407 [M+H]⁺.


(\pm)-(3a*R*,8*R*,8a*R*)-N-Benzyl-8-bromo-N-(4-*tert*-butylbenzyl)-4,5,6,7,8,8a-hexahydro-3*aH*-cyclohepta[*d*]thiazol-2-amine (5c). A solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohept-2-en-1-yl)thiourea (4c)** (77 mg, 0.19 mmol, 1 equiv.) in CH₂Cl₂ (5 ml) was treated with Br₂ (10 μ l, 0.19 mmol, 1 equiv.) and stirred at room temperature for 12 h, then was washed with aqueous saturated solution of Na₂SO₃ (3x10ml) and NaHCO₃ (3x10ml). The organic layer was dried over Na₂SO₄, concentrated and the residue purified by column chromatography (eluent: gradient of 0-2% methanol in CH₂Cl₂) to yield **(\pm)-(3a*R*,8*R*,8a*R*)-N-benzyl-8-bromo-N-(4-*tert*-butylbenzyl)-4,5,6,7,8,8a-hexahydro-3*aH*-cyclohepta[*d*]thiazol-2-amine (5c)** as light yellow oil (80 mg, 87%).

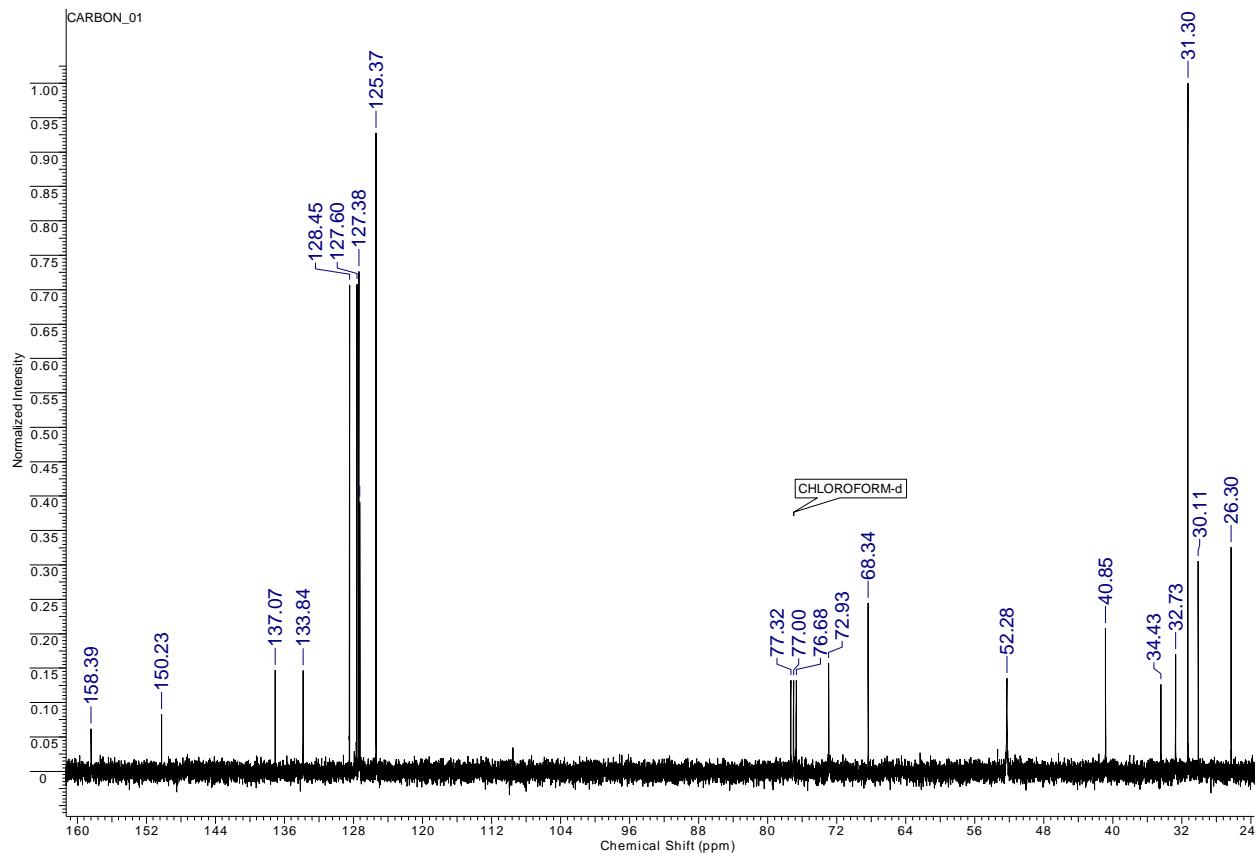
¹H NMR (δ , CDCl₃): 1.33 (s, 9H, *t*-Bu), 1.40 – 1.61 (m, 2H), 1.81-1.93 (m, 3H), 1.92 – 2.00 (m, 1H), 2.02-2.10 (m, 1H), 2.41 – 2.49 (m, 1H), 4.39 – 4.58 (m, 6H, H^{8a+8} + NCH₂Ph + NCH₂Ar), 4.84 (dd, 1H, *J* = 9.8, 8.6 Hz, H^{3a}), 7.17 (d, *J* = 8.3 Hz, 2H, H^{Ar}), 7.23 (d, *J* = 7.0 Hz, 2H, H^{Ar}), 7.30 (m, *J* = 7.0 Hz, 1H, H^{Ar}), 7.33 – 7.38 (m, 4H, H^{Ar}).



^{13}C NMR (δ , CDCl_3): 26.3, 29.6, 30.4, 31.3 ($\text{C}(\text{CH}_3)_3$), 34.5 ($\text{C}(\text{CH}_3)_3$), 38.9, 53.0 ($\text{NCH}_2\text{Ph} + \text{NCH}_2\text{Ar}$), 55.4 ($\text{C}^{8\text{a}}$), 65.4 (C^8), 71.8 ($\text{C}^{3\text{a}}$), 125.5 ($\text{C}^{3,5\text{-Ar}}$), 127.5, 127.6, 127.7, 128.6 ($\text{C}^{3,5\text{-Ph}}$), 132.9, 136.1, 150.7, 161.2 (C^2).



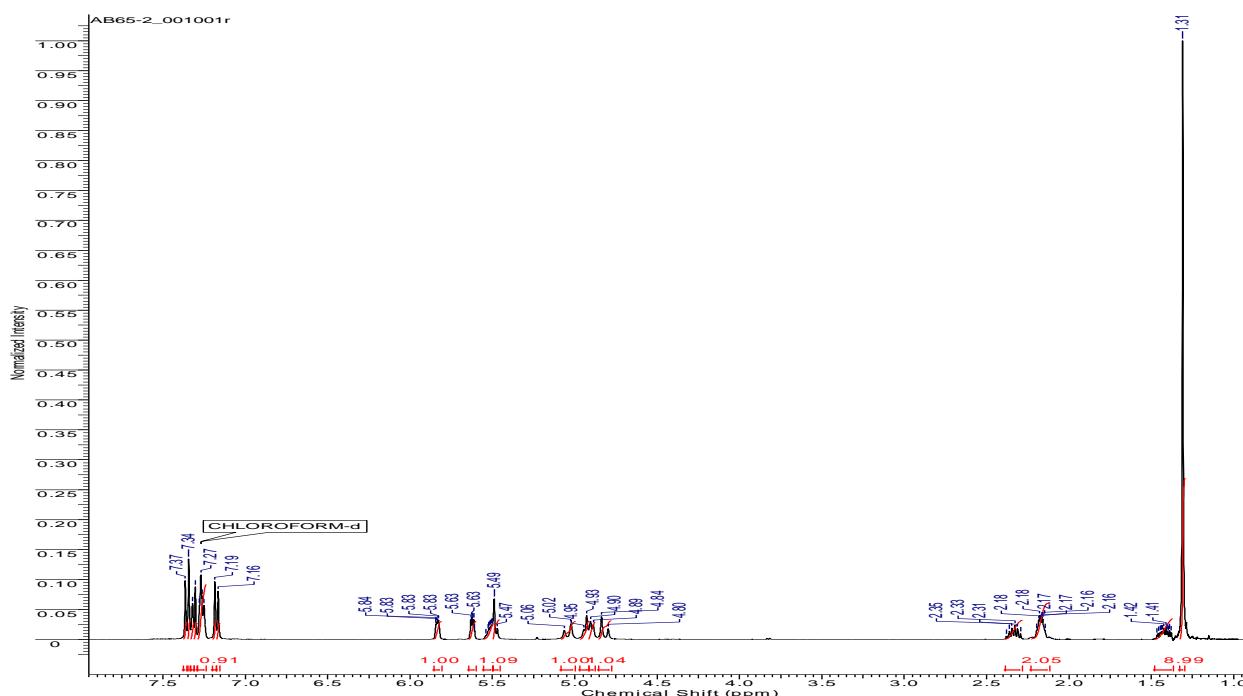
MS ESI, m/z : 485 [$\text{M}+\text{H}]^+$ / 487 [$\text{M}+2+\text{H}]^+$.


(\pm)-(3a*R*,8*R*,8a*R*)-*N*-Benzyl-*N*-(4-*tert*-butylbenzyl)-8-iodo-4,5,6,7,8,8a-hexahydro-3*aH*-cyclohepta[*d*]thiazol-2-amine (6c). A solution of 1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclohept-2-en-1-yl)thiourea (4c) (150 mg, 0.37 mmol, 1 equiv.) in CH₂Cl₂ (10 ml) was treated with I₂ (94 mg, 0.37 mmol, 1 equiv.). The reaction mixture was stirred at room temperature for 24 h, then was washed with aqueous saturated solution of Na₂SO₃ (3x10 ml) and NaHCO₃ (3x10 ml). The organic layer was dried over Na₂SO₄. The organic layer was dried over Na₂SO₄, concentrated to yield (\pm)-(3a*R*,8*R*,8a*R*)-*N*-benzyl-*N*-(4-*tert*-butylbenzyl)-8-iodo-4,5,6,7,8,8a-hexahydro-3*aH*-cyclohepta[*d*]thiazol-2-amine (6c) as yellowish oil (195 mg, 99%).

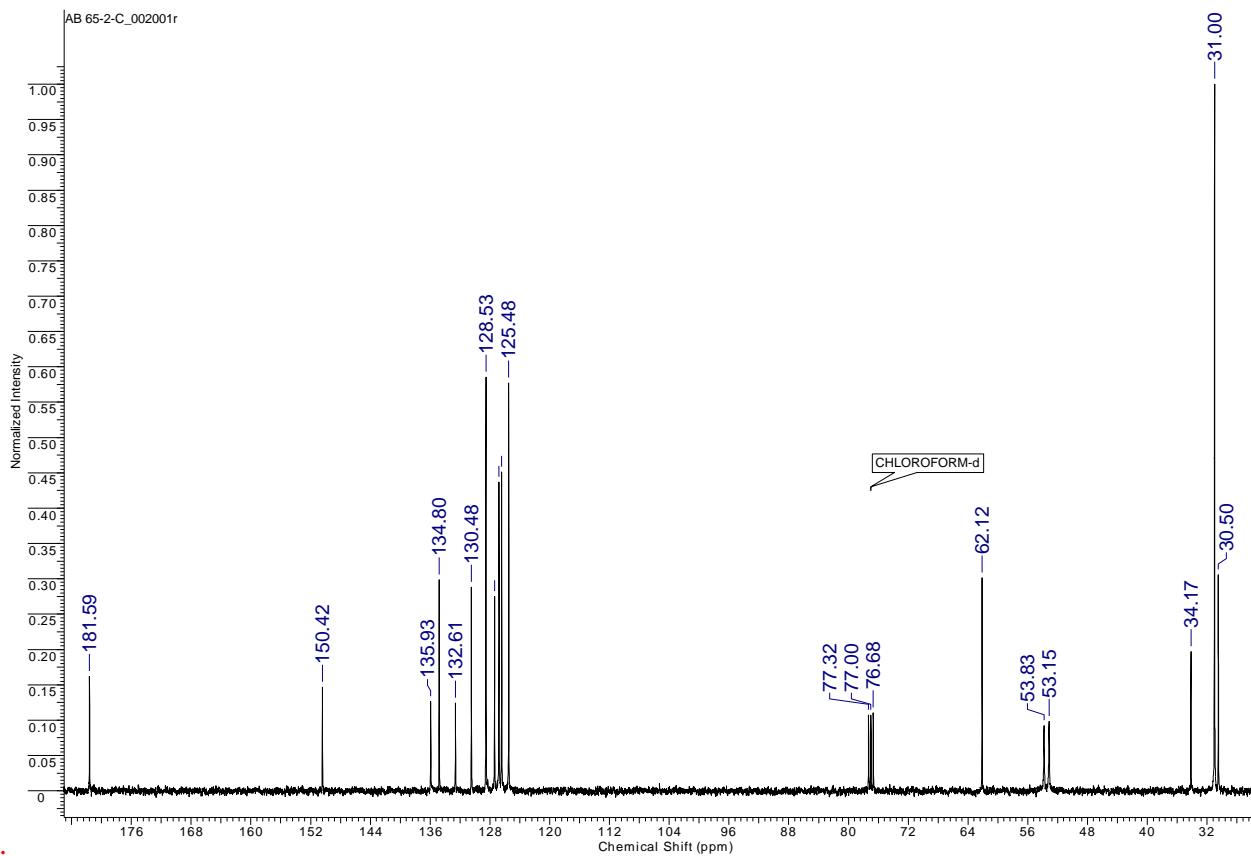
¹H NMR (δ , CDCl₃): 1.30 (s, 9H, *t*-Bu), 1.34 – 1.43 (m, 1H), 1.49 – 1.59 (m, 1H), 1.69 – 1.75 (m, 1H), 1.84 – 1.94 (m, 3H), 2.04 – 2.14 (m, 1H), 2.45 – 2.52 (m, 1H), 4.32 – 4.50 (m, 5H, NCH₂Ar+NCH₂Ph+H⁸), 4.59 (m, 1H, *J* = 10.5, 9.8 Hz, H^{8a}), 4.96 (dd, 1H, *J* = 9.8, 8.6 Hz, H^{3a}), 7.14 (d, *J* = 8.2 Hz, 2H, H^{Ar}), 7.20 (d, *J* = 7.1 Hz, 2H, H^{Ar}), 7.27 (m, *J* = 7.0 Hz, 1H, H^{Ar}), 7.30 – 7.35 (m, 4H, H^{Ar}).



¹³C NMR (δ , CDCl₃): 26.3, 30.1, 31.3 (C(CH₃)₃), 32.7, 34.4 (C(CH₃)₃), 40.8 (C⁸), 52.3 (NCH₂Ph+NCH₂Ar), 68.3 (C^{8a}), 72.9 (C^{3a}), 125.4 (C^{3,5-Ar}), 127.2, 127.4, 127.6, 128.5, 133.8, 137.1, 150.2, 158.4 (C²).

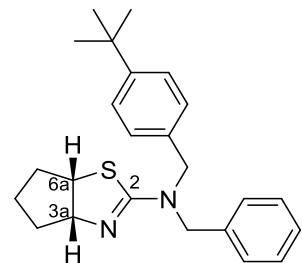

MS ESI, m/z: 533 [M+H]⁺.

1-Benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclopent-2-en-1-yl)thiourea (4a). Cyclopentene (1.3 ml, 18.1 mmol, 2 equiv.) dissolved in CCl₄ (10 ml) was treated at stirring with ***N*-bromosuccinimide** (NBS) (1.6 g, 9.0 mmol, 1 equiv.) and **azobisisobutyronitrile** (AIBN) (2 mg, 0.012 mmol, cat. equiv.). Reaction mass was refluxed for 1.5 h, then cooled to 0°C, after that was filtered and the precipitate was washed with CCl₄ (5 ml). The control of reaction was carried out by ¹H NMR. ¹H NMR (δ , CDCl₃): 2.37 – 2.42 (m, 3H), 2.60–2.68 (m, 1H), 5.17 (m, 1H, J = 2.8 Hz, H³), 6.00 – 6.04 (m, 1H, J = 2.1 Hz, H²), 6.05 – 6.08 (m, 1H, J = 5.1, 2.2 Hz, H¹). A solution of **3-bromocyclopent-1-ene** in CCl₄ from the previous step was treated dropwise with the solution of **potassium thiocyanate** (0.88 g, 9.0 mmol, 1 equiv.) in absolute MeOH (5 ml) at ice cooling and was stirred for 2h at room temperature, after that was filtered through SiO₂, washed with hexane (20 ml). The solution of **3-isothiocyanatocyclopent-1-ene** was used directly for the next step without evaporation and further purification. The control of reaction was carried out by ¹H NMR analysis of the reaction solution. The presence of resonance signal at 4.66 – 4.72 ppm (m, 1H, H³) instead of 5.17 ppm confirms the conversion of bromide into isothiocyanate.

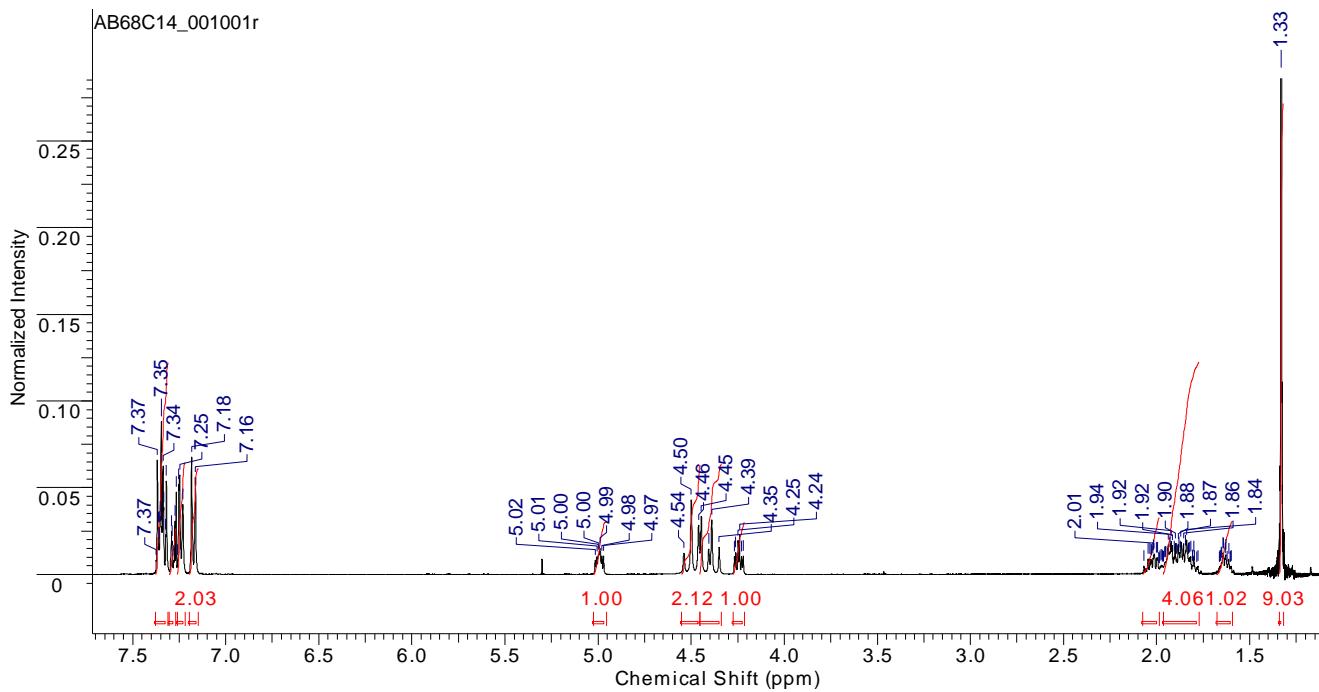


3-Isothiocyanatocyclopent-1-ene filtrate solution from the previous step was treated with DIPEA (3.1 ml, 18.1 mmol, 2equiv.) and **N-benzyl-N-(4-*tert*-butylbenzyl)amine** (2.3 g, 9.0 mmol, 1equiv). The reaction mixture was stirred overnight at room temperature, concentrated and purified by column chromatography (eluent: ethyl acetate : hexane gradient v/v from 1:10 to 1:7) to give **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclopent-2-en-1-yl)thiourea (4a)** as a colorless oil (1.7 g, overall yield from 3 steps 50%).

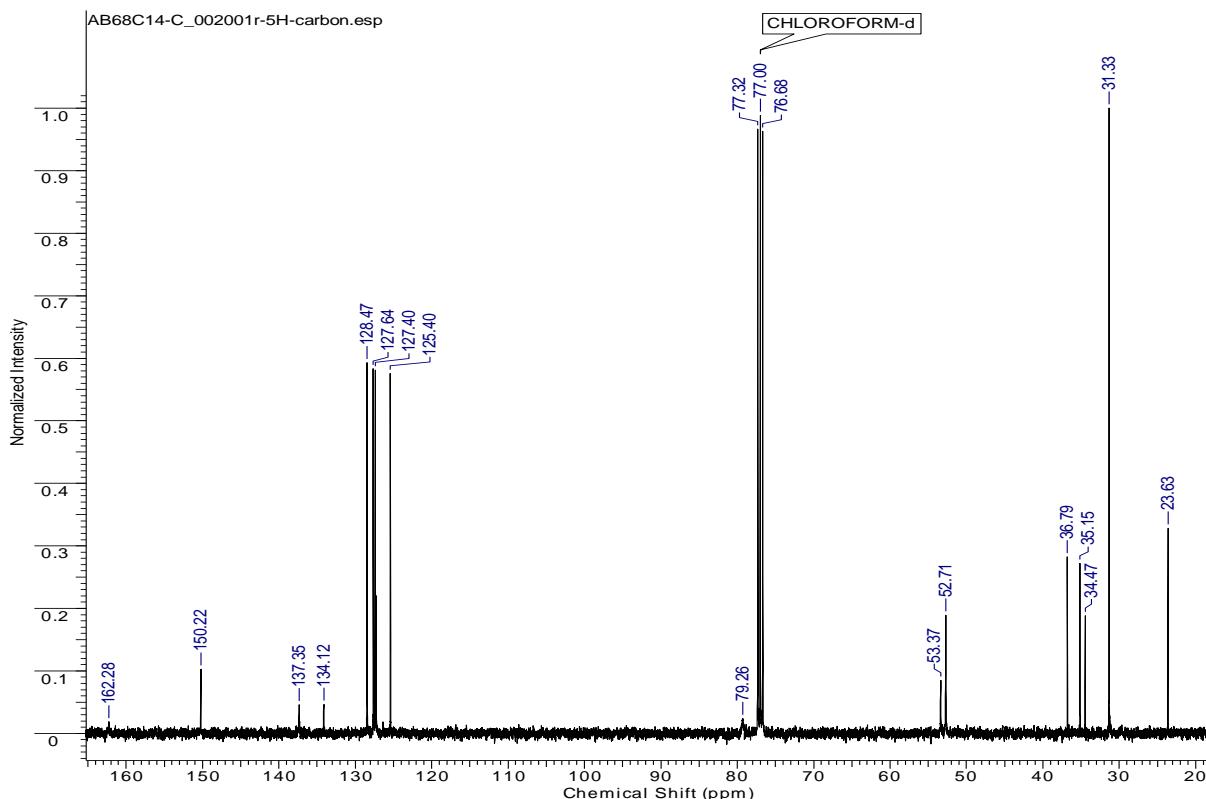
¹H NMR (δ , CDCl₃): 1.31 (s, 9H, *t*-Bu), 1.38 – 1.46 (m, 1H), 2.13 – 2.21 (m, 2H), 2.29 – 2.38 (m, 1H), 4.82 (d, 1H, J = 16.2 Hz, NCH₂Ph), 4.91 (d, 1H, J = 16.1 Hz, NCH₂Ar), 4.93 (d, 1H, J = 16.1 Hz, NCH₂Ar), 5.04 (d, 1H, J = 16.2 Hz, NCH₂Ph), 5.48 – 5.55 (m, 2H, NH+H³), 5.62 (m, 1H, J = 5.6, 1.9 Hz, H¹), 5.83 (m, 1H, J = 5.6, 1.4 Hz, H²), 7.17 (d, J = 8.2 Hz, 2H, H^{Ar}), 7.23 – 7.32 (m, 5H, H^{Ar}), 7.35 (d, J = 8.2 Hz, 1H, H^{Ar}).



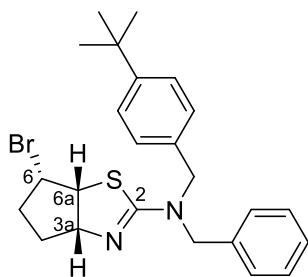
¹³C NMR (δ , CDCl₃): 30.5, 31.0 (C(CH₃)₃), 34.2 (C(CH₃)₃), 53.2 (NCH₂Ar), 53.8 (NCH₂Ph), 62.1 (C¹), 125.5 (C^{3,5-Ar}), 126.4, 126.8, 127.4 (C^{4-Ph}), 128.5, 130.5 (C³), 132.6 (C²), 134.8 (C^{1-Ar}), 135.9 (C^{1-Ph}), 150.4 (C^{4-Ar}), 181.6 (C²).



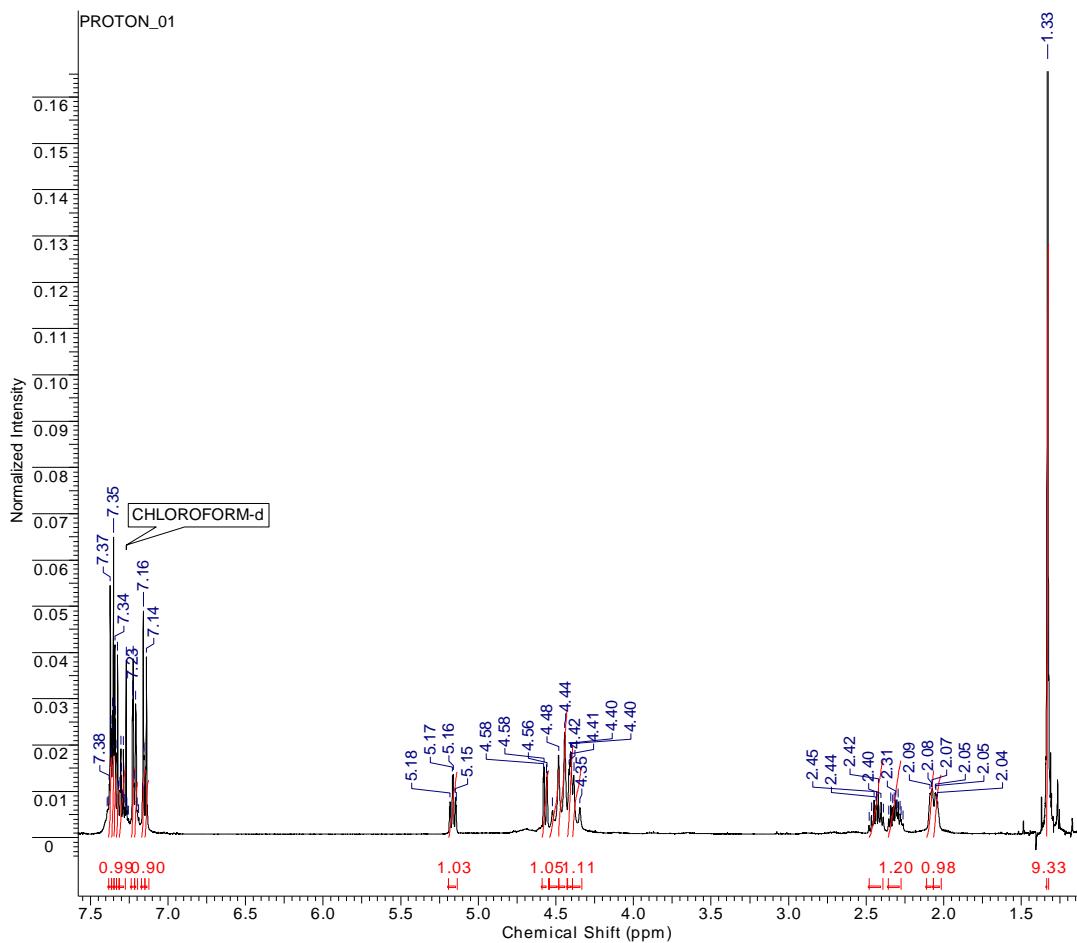
(±)-(3a*R*,6a*S*)-*N*-Benzyl-*N*-(4-*tert*-butylbenzyl)-4,5,6,6a-tetrahydro-3a*H*-cyclopenta[*d*]thiazol-2-amine (7a).


A solution of **(\pm)-(3aR,6R,6aR)-N-benzyl-N-(4-*tert*-butylbenzyl)-6-iodo-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]thiazol-2-amine (6a)** (131 mg, 0.21 mmol, 1 equiv.) in toluene (10 ml) was treated with tri-*n*-butyltin hydride (67 μ l, 0.25 mmol, 1.2 equiv) and azobisisobutyronitrile (AIBN) (2 mg, 0.012 mmol, catalytic amount). The mixture was heated at 100 $^{\circ}$ C under argon atmosphere during 5 h, then concentrated and purified by column chromatography (eluent: 2% ethyl acetate and 2% Et₃N in hexane) to yield **(\pm)-(3aR,6aS)-N-benzyl-N-(4-*tert*-butylbenzyl)-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]thiazol-2-amine** as colorless oil (63 mg, 64%).

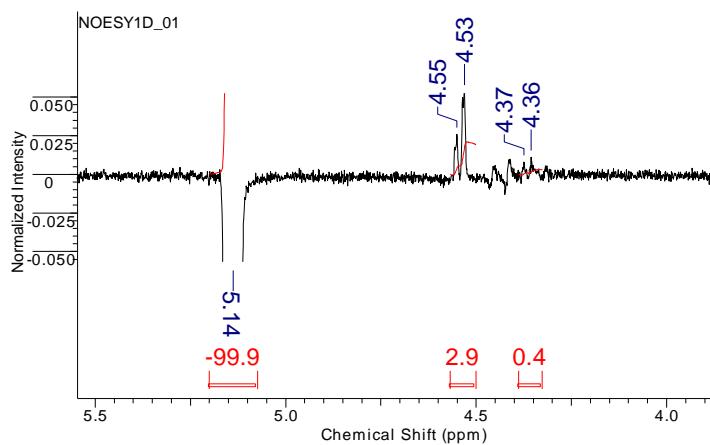
¹H NMR (δ , CDCl₃): 1.33 (s, 9H, *t*-Bu), 1.59-1.67 (m, 1H), 1.77-1.97 (m, 4H), 1.99-2.07 (m, 1H), 4.24 (dt, 1H, J = 7.8, 3.3 Hz, H^{6a}), 4.37 (d, 1H, J = 15.8 Hz, NCH₂Ph), 4.43 (d, 1H, J = 16.0 Hz, NCH₂Ar), 4.48 (d, 1H, J = 16.0 Hz, NCH₂Ar), 4.52 (d, 1H, J = 15.8 Hz, NCH₂Ph), 5.00 (ddd, 1H, J = 7.8, 6.3, 3.3 Hz, H^{3a}), 7.17 (d, J = 8.3 Hz, 2H, H^{Ar}), 7.24 (m, J = 8.3 Hz, 2H, H^{Ar}), 7.28 (m, J = 7.2 Hz, 1H, H^{Ar}), 7.32 – 7.37 (m, 4H, H^{Ar}).

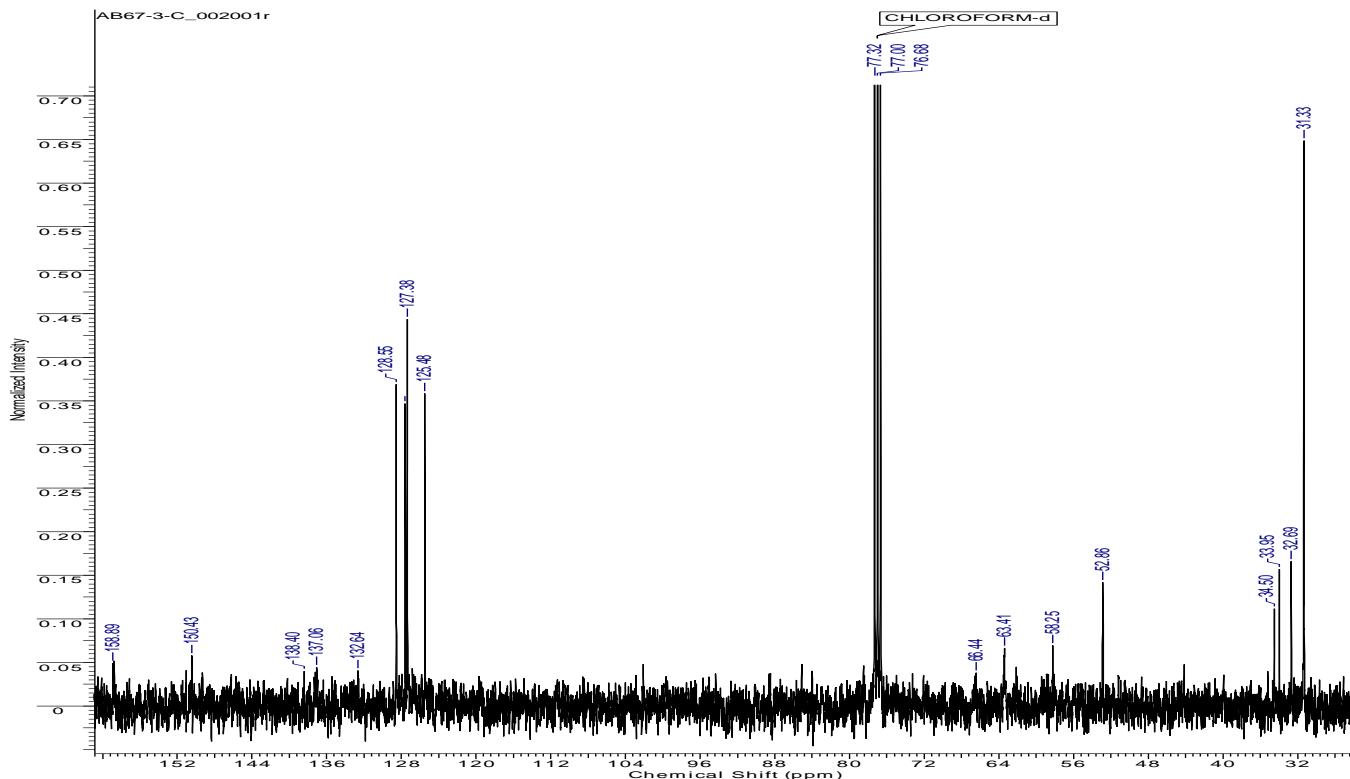


^{13}C NMR (δ , CDCl_3): 23.6 (C^5), 31.3 ($\text{C}(\text{CH}_3)_3$), 34.5 ($\text{C}(\text{CH}_3)_3$), 35.1, 36.8, 52.7 ($\text{NCH}_2\text{Ar} + \text{NCH}_2\text{Ph}$), 53.4 ($\text{C}^{6\text{a}}$), 79.3 ($\text{C}^{3\text{a}}$), 125.4 ($\text{C}^{3,5\text{-Ar}}$), 127.2 ($\text{C}^{4\text{-Ph}}$), 127.4 (C), 127.6 (C), 128.5 (C), 134.1 ($\text{C}^{1\text{-Ar}}$), 137.3 ($\text{C}^{1\text{-Ph}}$), 150.2 ($\text{C}^{4\text{-Ar}}$), 162.3 (C^2).

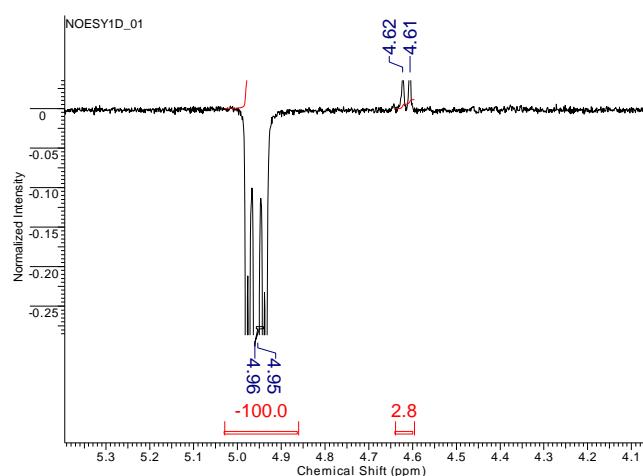
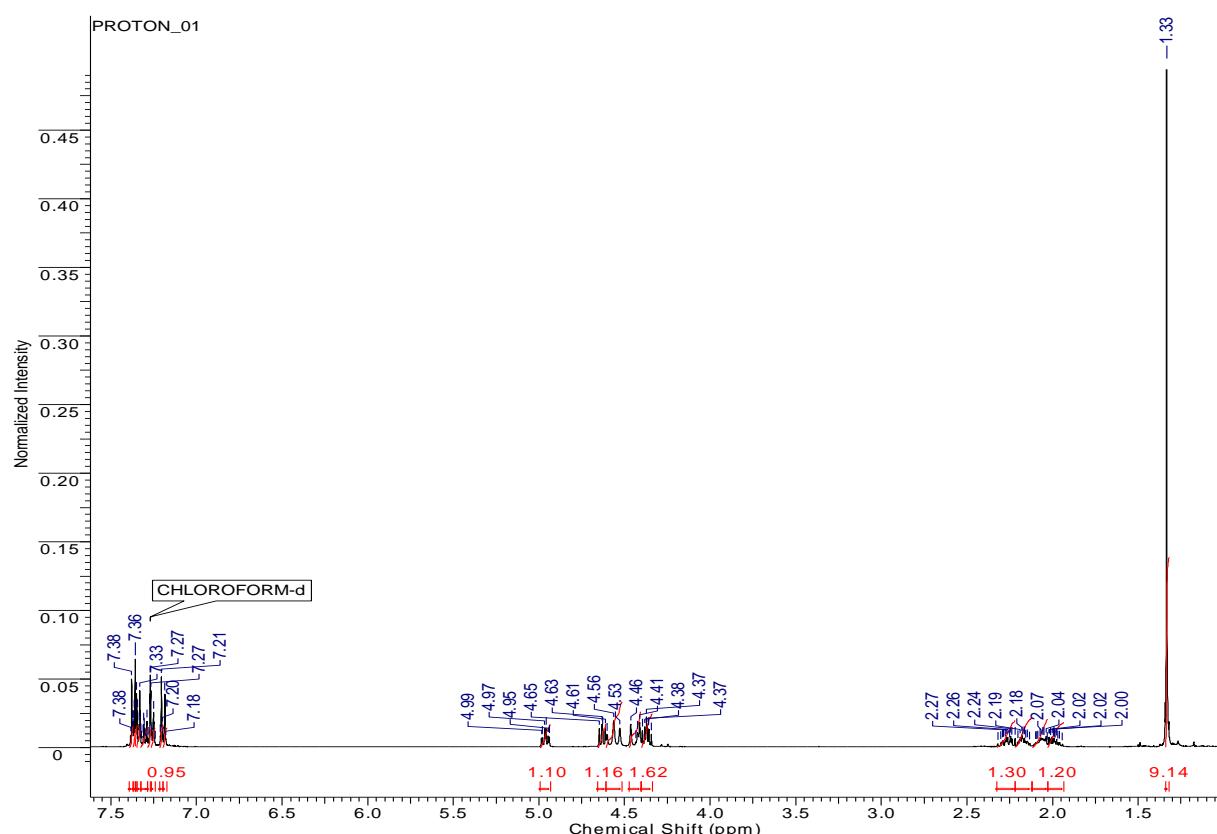
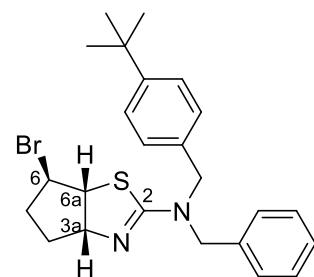


MS (ESI), m/z : 379 $[\text{M}+\text{H}]^+$.

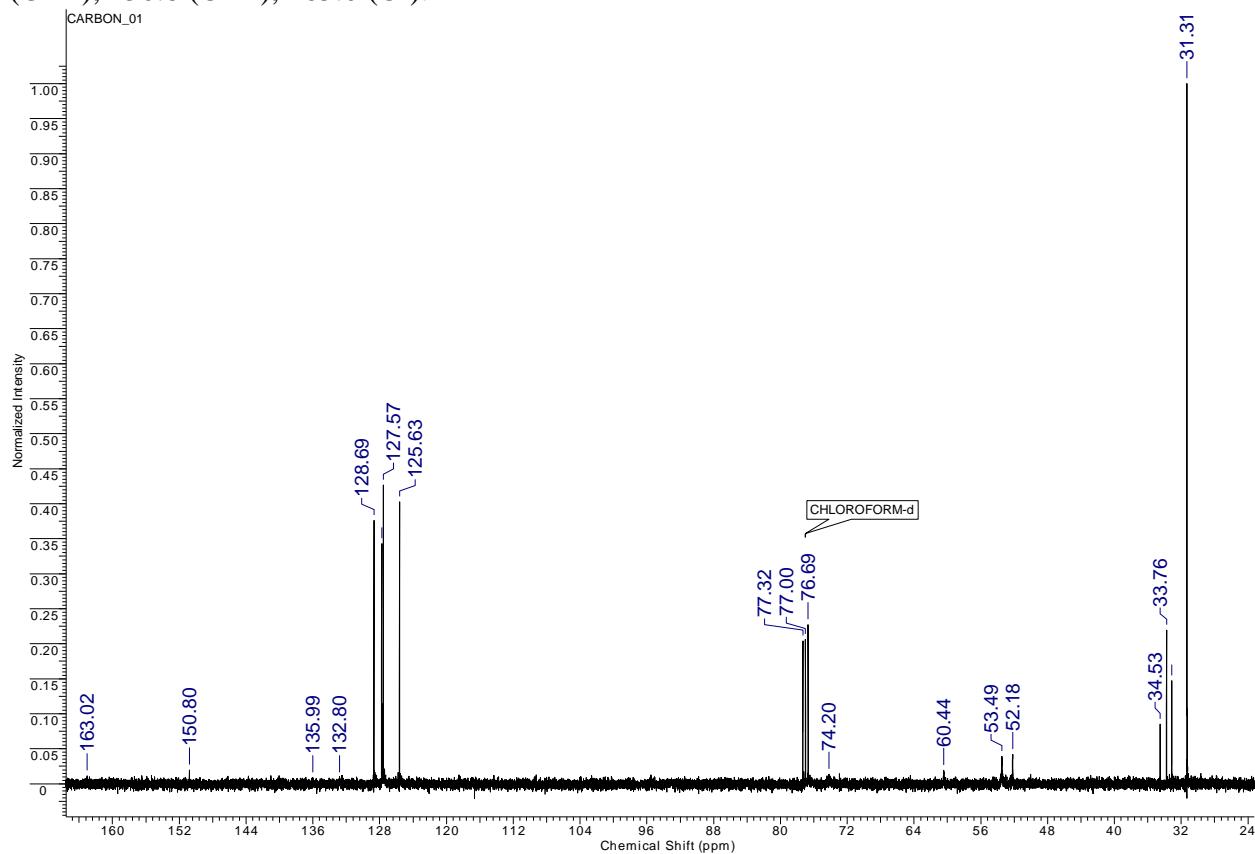

(±)-(3a*R*,6*S*,6a*R*)-*N*-Benzyl-6-bromo-*N*-(4-*tert*-butylbenzyl)-4,5,6,6a-tetrahydro-3*aH*-cyclopenta-[*d*]thiazol-2-amine (5'a). A solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclopent-2-en-1-yl)-thiourea** (128 mg, 0.34 mmol, 1 equiv.) in CH₂Cl₂ (5 ml) was treated with Br₂ (18 µl, 0.34 mmol, 1 equiv.) and stirred at room temperature for 12 h. Then washed with aqueous saturated solution of Na₂SO₃ (3x10ml) and NaHCO₃ (3x10ml). The organic layer was dried over Na₂SO₄, concentrated and the residue purified by column chromatography (eluent: CH₂Cl₂) to yield **(±)-(3a*R*,6*S*,6a*R*)-*N*-benzyl-6-bromo-*N*-(4-*tert*-butylbenzyl)-4,5,6,6a-tetrahydro-3*aH*-cyclopenta[*d*]thiazol-2-amine (5'a)** as slightly yellow oil (63 mg, 41%) and **(±)-(3a*R*,6*R*,6a*R*)-*N*-benzyl-6-bromo-*N*-(4-*tert*-butylbenzyl)-4,5,6,6a-tetrahydro-3*aH*-cyclopenta[*d*]thiazol-2-amine (5a)** as slightly yellow oil (90 mg, 58%).


¹H NMR (δ , CDCl₃): ¹H NMR (δ , CDCl₃): 1.33 (s, 9H, *t*-Bu), 2.02-2.06 (m, 1H), 2.07-2.11 (m, 1H), 2.26-2.35 (m, 1H), 2.39-2.48 (m, 1H), 4.37 (d, 1H, *J* = 15.6 Hz, NCH₂Ar), 4.41 (m, 1H, *J* = 4.0, 2.2, 1.8 Hz, H⁶), 4.42 (d, 1H, *J* = 15.9 Hz, NCH₂Ph), 4.46 (d, 1H, *J* = 15.9 Hz, NCH₂Ph), 4.50 (d, 1H, *J* = 15.6 Hz, NCH₂Ar), 4.57 (dd, 1H, *J* = 8.1, 1.8 Hz, H^{6a}), 5.16 (dt, 1H, *J* = 8.1, 1.5 Hz, H^{3a}), 7.15 (d, *J* = 8.4 Hz, 2H, H^{Ar}), 7.22 (m, *J* = 8.3 Hz, 2H, H^{Ar}), 7.29 (m, *J* = 7.0 Hz, 1H, H^{Ar}), 7.32 – 7.38 (m, 4H, H^{Ar}).

NOESY 1D: a) $\text{H}^3\text{a} - \text{H}^6\text{a}$ (2.9 %), $\text{H}^3\text{a} - \text{H}^6$ (0.4%)

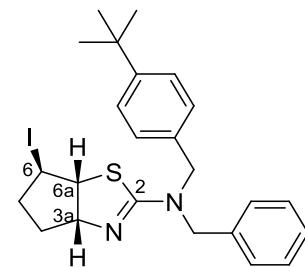




^{13}C NMR (δ , CDCl_3): 31.33 ($\text{C}(\text{CH}_3)_3$) 32.69, 33.95, 34.50 ($\text{C}(\text{CH}_3)_3$) 52.86 ($\text{NCH}_2\text{Ar} + \text{NCH}_2\text{Ph}$), 58.25 (C^6a) 63.41 (C^6), 66.44(C^3a), 125.48 ($\text{C}^{3,5-\text{Ar}}$), 127.38, 127.60, 128.55 ($\text{C}^{3,5-\text{Ph}}$), 132.64, 137.20, 138.4, 150.43, 158.89 (C^2).

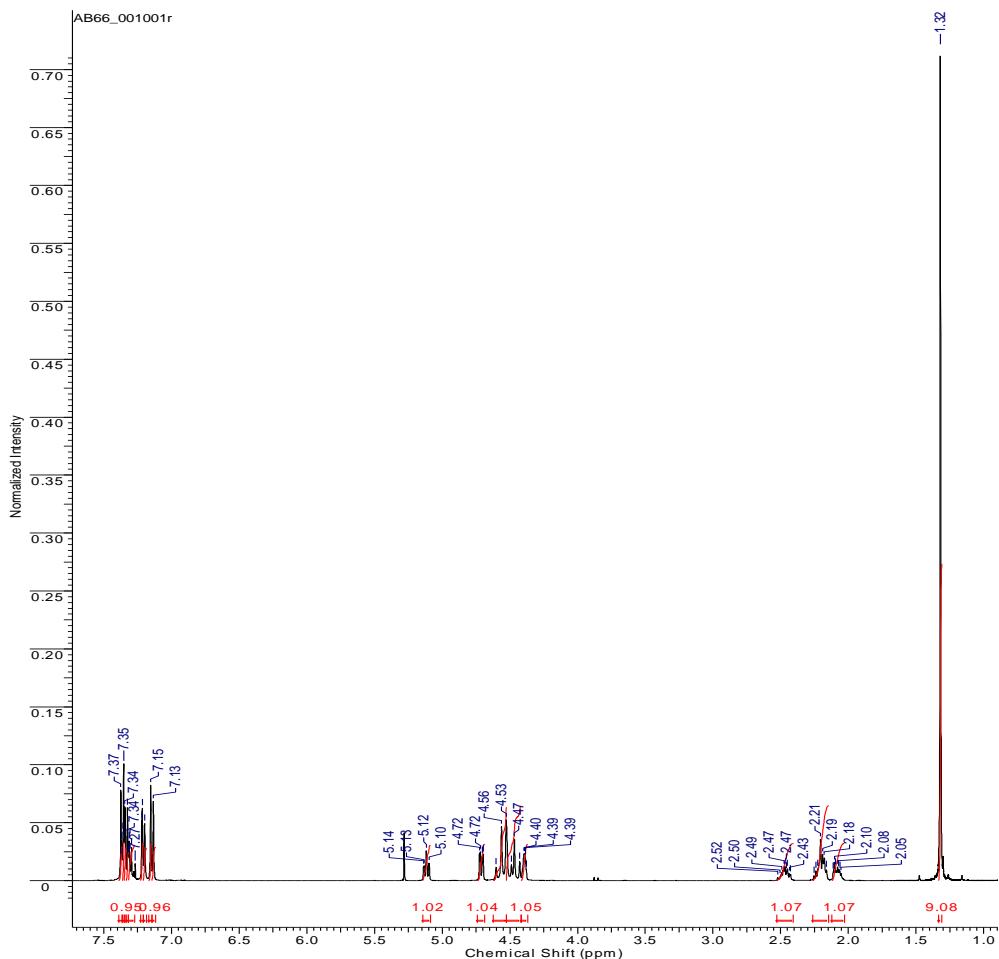


MS (ESI), m/z : 457 [$\text{M}+\text{H}]^+$ / 459 [$\text{M}+2+\text{H}]^+$.

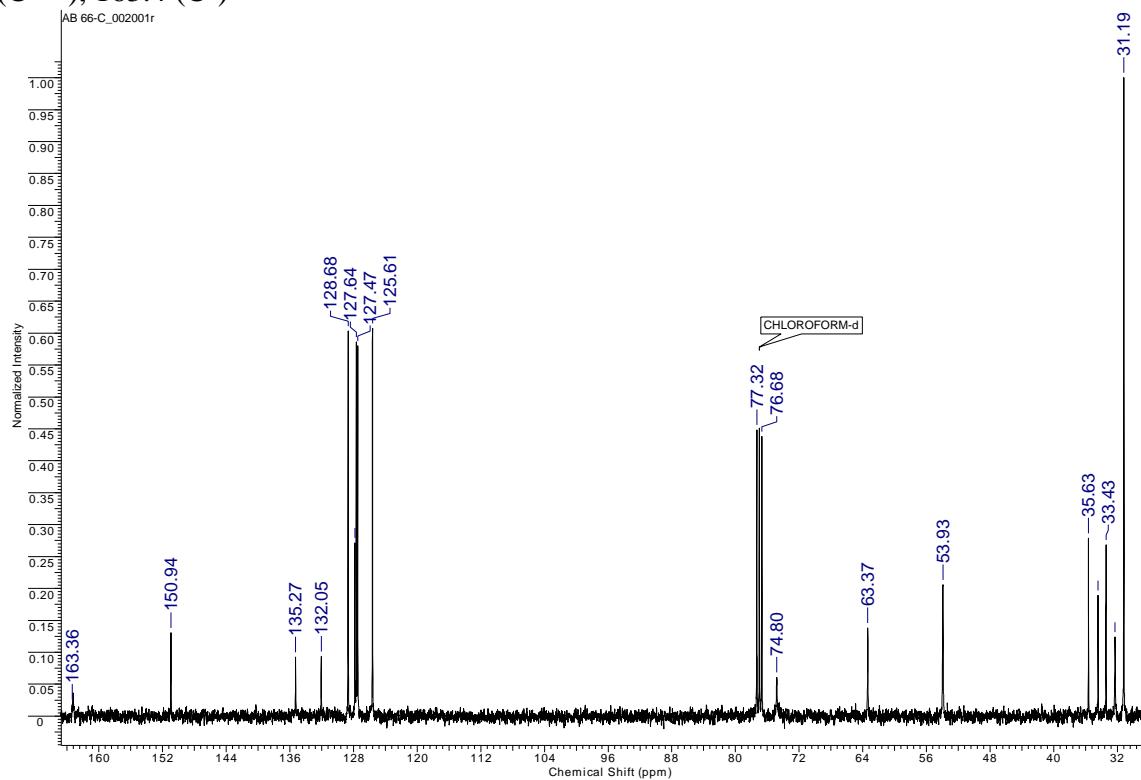
(\pm)-(3a*R*,6*R*,6a*R*)-*N*-Benzyl-6-bromo-*N*-(4-(*tert*-butyl)benzyl)-4,5,6,6a-tetrahydro-3*aH*-cyclopenta[*d*]thiazol-2-amine (5a**).** ^1H NMR (δ , CDCl_3): 1.33 (s, 9H, *t*-Bu), 1.94-2.02 (m, 1H), 2.04-2.11 (m, 1H), 2.12-2.21 (m, 1H), 2.24-2.32 (m, 1H), 4.37 (ddd, 1H, J = 9.7, 6.2, 5.5 Hz, H⁶), 4.49 (d, 1H, J = 16.0 Hz, NCH_2Ph), 4.44 (d, 1H, J = 16.0 Hz, NCH_2Ph), 4.55 (d, 1H, J = 14.7 Hz, NCH_2Ar), 4.58 (d, 1H, J = 14.7 Hz, NCH_2Ar), 4.63 (dd, 1H, J = 7.8, 6.2 Hz, H^{6a}), 4.96 (dt, 1H, J = 7.8, 2.6 Hz, H^{3a}), 7.18 (d, J = 8.4 Hz, 2H, H^{Ar}), 7.25 (m, J = 7.5 Hz, 2H, H^{Ar}), 7.29 (m, J = 7.2 Hz, 1H, H^{Ar}), 7.31 – 7.37 (m, 4H, H^{Ar}).



¹³C NMR (δ , CDCl₃): 31.3 (C(CH₃)₃), 33.1, 33.8, 34.5 (C(CH₃)₃), 52.2 (C^{6a}), 53.5 (NCH₂Ar + NCH₂Ph), 60.4 (C⁶), 74.2 (C^{3a}), 125.6 (C^{3,5-Ar}), 127.6, 127.7 (C^{4-Ph}), 127.8, 128.7, 132.8 (C^{1-Ar}), 136.0 (C^{1-Ph}), 150.8 (C^{4-Ar}), 163.0 (C²).

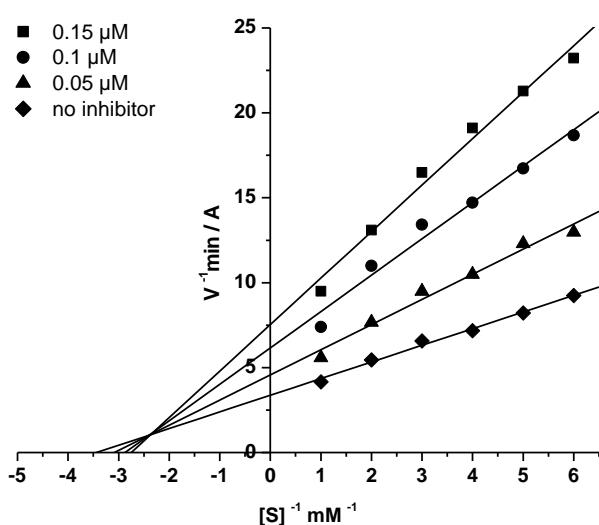


MS (ESI), m/z: 457 [M+H]⁺ / 459 [M+2+H]⁺.


(\pm)-(3a*R*,6*R*,6a*R*)-*N*-Benzyl-*N*-(4-*tert*-butylbenzyl)-6-iodo-4,5,6,6a-tetrahydro-3*aH*-cyclopenta-[*d*]thiazol-2-amine (6a). A solution of **1-benzyl-1-(4-*tert*-butylbenzyl)-3-(cyclopent-2-en-1-yl)thiourea (4a)** (130 mg, 0.34 mmol, 1 equiv.) in CH₂Cl₂ (10 ml) was treated with I₂ (87 mg, 0.34 mmol, 1 equiv.). The reaction mixture was stirred at room temperature for 12 h, then washed with aqueous saturated solution of Na₂SO₃ (3x10ml) and NaHCO₃ (3x10ml). The organic layer was dried over Na₂SO₄, concentrated to yield (\pm)-(3a*R*,6*R*,6a*R*)-*N*-benzyl-*N*-(4-*tert*-butylbenzyl)-6-iodo-4,5,6,6a-tetrahydro-3*aH*-cyclopenta[*d*]thiazol-2-amine (6a) as colorless oil (171 mg, 99%).

¹H NMR (δ , CDCl₃): 1.33 (s, 9H, *t*-Bu), 2.04-2.12 (m, 1H), 2.15-2.25 (m, 2H), 2.41-2.52 (m, 1H), 4.39 (m, 1H, *J* = 5.8, 2.6 Hz, H^{6a}), 4.45 (d, 1H, *J* = 15.8 Hz, NCH₂Ph), 4.51 (d, 1H, *J* = 14.8 Hz, NCH₂Ar), 4.55 (d, 1H, *J* = 14.8 Hz, NCH₂Ar), 4.58 (d, 1H, *J* = 15.8 Hz, NCH₂Ph), 4.71 (dd, 1H, *J* = 8.1, 2.6 Hz, H⁶), 5.12 (dt, 1H, *J* = 8.1, 1.6 Hz, H^{3a}), 7.14 (d, 2H, *J* = 8.3 Hz, H^{Ar}), 7.21 (d, 2H, *J* = 8.1 Hz, H^{Ar}), 7.28-7.37 (m, 5H, H^{Ar}).

¹³C NMR (δ , CDCl₃): 31.2 (C(CH₃)₃), 32.3, 33.4, 34.4 (C(CH₃)₃), 35.6, 53.9 (NCH₂Ar + NCH₂Ph), 63.4 (C^{6a}), 74.8 (C^{3a}), 125.6 (C^{3,5-Ar}), 127.5, 127.6, 127.8, 128.7 (C^{3,5-Ph}), 132.1(C^{1-Ar}), 135.3 (C^{1-Ph}), 150.9 (C^{4-Ar}), 163.4 (C²)



MS (ESI), m/z: 505 [M+H]⁺.

3. Biological Assays

In vitro AChE, BChE Inhibition. All experiments were carried out in accordance with the standard protocols approved by IPAC RAS. The following items were purchased from Sigma-Aldrich (St. Louis, MO, USA): human erythrocyte AChE, equine serum BChE, acetylthiocholine iodide (ATCh), butyrylthiocholine iodide (BTCh), 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB), tacrine. We measured the activity of AChE and BChE according to the colorimetric Ellman procedure ($\lambda = 412$ nm), as described in detail in [S4]. Measurements were carried out in 0.1M K/Na phosphate buffer at pH 7.5, 25 °C. Final concentrations of reactants were: 0.33 mM DTNB, 0.02 unit ml⁻¹ of AChE or BChE and 1 mM of substrate (ATCh or BTCh, respectively). Freshly prepared solutions of the enzymes were used, which retained a constant activity during the experiment (2–2.5 h). Chromophore absorbances were measured with a FLUOStar Optima microplate reader (BMG Labtech, Ortenberg, Germany). DMSO (2% v/v) was employed as the solvent; the concentration used did not alter the activities of the enzymes. For inhibition assay, initially, we used a single concentration of 20 µM for all compounds. The test compounds were preincubated with the enzymes at 25 °C for 5 min, followed by the addition of the substrates. Subsequently, IC₅₀ values (µM) were determined for the most active compounds against AChE, BChE.

Kinetic Study of AChE and BChE Inhibition. Determination of Steady-State Inhibition Constants. We assessed the mechanisms of AChE and BChE inhibition by performing a thorough analysis of enzyme kinetics. After a 5 min incubation at 25°C (for temperature equilibration) with three increasing concentrations of inhibitor and six decreasing substrate concentrations, the residual enzyme activity was measured as described above for enzymatic assays. Linear regression of 1/V versus 1/[S] double-reciprocal (Lineweaver–Burk) plots was used to determine the inhibition constants for the competitive component (K_i) and noncompetitive component (αK_i).

Steady state inhibition of BChE by compound **7c**. Lineweaver–Burk reciprocal plots of initial velocity and substrate concentrations in the presence of inhibitor (three concs.) and its absence are presented.

References

- S1** E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, *J. Comput. Chem.*, 2004, **25**, 1605.
- S2** O. Trott and A. J. Olson, *J. Comput. Chem.*, 2010, **31**, 455.
- S3** F. Greenwood and W. James, *J. Am. Chem. Soc.*, 1951, **73**, 4495.
- S4** G. F. Makhaeva, N. V. Kovaleva, N. P. Boltneva, S. V. Lushchekina, T. Yu. Astakhova, E. V. Rudakova, A. N. Proshin, I. V. Serkov, E. V. Radchenko, V. A. Palyulin, S. O. Bachurin and R. J. Richardson, *Molecules*, 2020, **25**, 3915.