
## New chain polymer $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n \cdot 7n\text{H}_2\text{O}$ : synthesis, structure, and magnetic characteristics

Svetlana P. Petrosyants, Andrey B. Ilyukhin, Konstantin A. Babeshkin,  
 Nikolay N. Efimov and Pavel S. Koroteev\*

*N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences,  
 119991 Moscow, Russian Federation. E-mail: pskoroteev@list.ru*

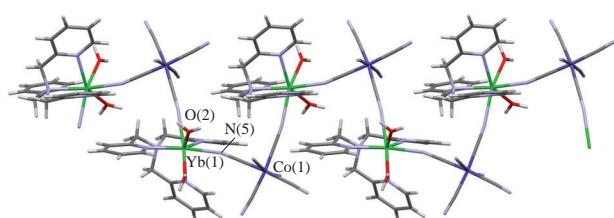
DOI: 10.1016/j.mencom.2023.01.013

The  $3d$ – $4f$  heterometallic polymeric complex, namely  $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n \cdot 7n\text{H}_2\text{O}$  [tpa = tris(2-pyridylmethyl)amine], was synthesized and characterized. Its polymer structure is formed of  $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]$  chains and crystallization water molecules with a two-capped trigonal prism  $\text{Yb}^{3+}$  coordination polyhedron; the  $\text{Yb}^{3+}$  coordination number is 8, and the coordination site is  $\text{YbN}_6\text{O}_2$ . Magnetic characteristics indicate that the complex exhibits the properties of a single-chain magnet with a magnetization reversal barrier ( $\Delta E/k_B$ ) of 42 K.

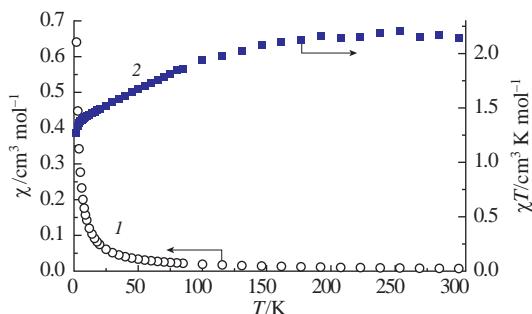


**Keywords:** ytterbium, heterometallic complexes, cyanometallate chains, coordination polymers, single-molecule magnets.

Promising types of magnetic nanomaterials vary from transition metal complexes<sup>1</sup> and stable organic radicals<sup>2</sup> to stabilized ferromagnetic oxide nanoparticles.<sup>3</sup> Among them, single-molecule magnets (SMMs) are of particular interest. Like usual magnets, the SMMs are able to maintain magnetization in the absence of an outer magnetic field, and they can retain their magnetization for hundreds of seconds. The presence of an energy barrier, which allows the magnetic moments of a system to be in an ordered state for a certain time, makes it promising to use SMMs in devices for storing high-density information, in quantum computers, and in circuits for miniature spintronics.<sup>4</sup> Today, much attention is drawn to a subclass of SMMs such as single-chain magnets (SCMs), the most promising of which are coordination-polymer  $3d$ – $4f$  chains, whose magnetic characteristics depend on the nature of the lanthanide cation. Among the chain structures, the polymer chains based on cyanometallate bridging complexes belong to the most interesting types.<sup>5–8</sup> For the construction of chain structures, the well-known ‘complex as a ligand’ approach is used; the polycyanide anions  $[\text{M}(\text{CN})_6]^{3-}$  ( $\text{M} = \text{Cr, Mn, Co, Fe, etc.}$ ), which are potential N donors, are often used as such ligands. The formation of chain structures is controlled by introducing blocking mono- or polydentate molecular or ionic N or N,O ligands into the reaction media.<sup>9–18</sup>


In this work, as a part of our research of SCMs,<sup>12,13</sup> we synthesized the coordination polymer  $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n \cdot 7n\text{H}_2\text{O}$  [tpa = tris(2-pyridylmethyl)amine] and studied its physical and

chemical properties, structure, and magnetic characteristics in static and dynamic modes.

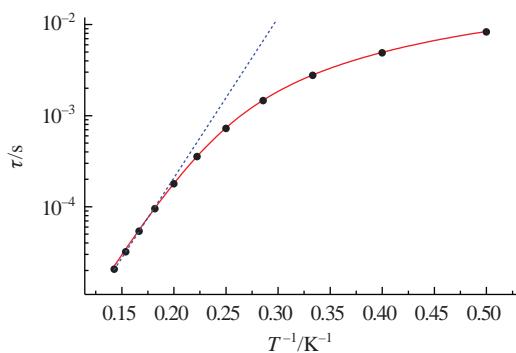

The compound  $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n \cdot 7n\text{H}_2\text{O}$  **1** was obtained by the slow diffusion of an ethanolic solution of  $\text{YbCl}_3 \cdot 6\text{H}_2\text{O}$  and tpa into a solution of  $\text{K}_3[\text{Co}(\text{CN})_6]$  in a mixture of  $\text{H}_2\text{O}$  and EtOH with the molar ratio  $\text{Yb} : \text{Co} : \text{tpa} = 1 : 1 : 1$ .<sup>†</sup> Comparison of the IR spectra of  $\text{K}_3[\text{Co}(\text{CN})_6]$  and compound **1** showed that the characteristic  $\nu(\text{C}=\text{N})$  band in the synthesized compound was split to unambiguously indicate the presence of terminal ( $2134 \text{ cm}^{-1}$ ) and bridging ( $2164 \text{ cm}^{-1}$ ) cyanide ligands [Figure S1(a), see Online Supplementary Materials]. There was no splitting of the corresponding band ( $2126 \text{ cm}^{-1}$ ) in the spectrum of  $\text{K}_3[\text{Co}(\text{CN})_6]$  [Figure S1(b)]. According to X-ray diffraction data,<sup>‡</sup> the structure of complex **1** is built of 1D polymeric chains  $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n$  (Figure 1) and crystallization water molecules. The coordination

<sup>†</sup> A solution of  $\text{YbCl}_3 \cdot 6\text{H}_2\text{O}$  (0.109 mmol, 0.0422 g) in EtOH (2.5 ml) was added in small portions to a solution of tpa (0.109 mmol, 0.0317 g) in EtOH (2 ml), and the mixture was stirred for about 30 min. The resulting solution was overlaid onto a solution of  $\text{K}_3[\text{Co}(\text{CN})_6]$  (0.109 mmol, 0.0363 g) in a mixture of  $\text{H}_2\text{O}$  (2 ml) and EtOH (2 ml) obtained by dissolving the salt in water followed by the addition of the alcohol. The system was left at room temperature until the complete isolation of solid phase (for about a week). The solid phase was separated on a paper filter, washed with a mixture of solvents, and dried in air.

<sup>‡</sup> *Crystal data for **1**.*  $\text{C}_{24}\text{H}_{36}\text{CoN}_{10}\text{O}_9\text{Yb}$  ( $M = 840.60$ ), orthorhombic, space group  $\text{Pna}2_1$ ,  $T = 100(2)$  K,  $a = 13.9826(8)$ ,  $b = 17.9074(9)$  and  $c = 13.0559(7)$  Å,  $V = 3269.1(3)$  Å<sup>3</sup>,  $Z = 4$ ,  $d_{\text{calc}} = 1.708 \text{ g cm}^{-3}$ ; crystal size,  $0.50 \times 0.01 \times 0.01$  mm. Total of 23798 reflections were collected ( $2.28^\circ < \theta < 25.02^\circ$ ),  $\mu = 3.413 \text{ mm}^{-1}$ , 5608 independent reflections ( $R_{\text{int}} = 0.068$ ). Data/restraints/parameters: 5608/205/400. The final refinement parameters were:  $R_1 = 0.0533$ ,  $wR_2 = 0.1336$  for reflections with  $I > 2\sigma(I)$ ;  $R_1 = 0.0729$ ,  $wR_2 = 0.1543$  for all reflections; absolute structure parameter  $-0.018(16)$ ; largest diff. peak/hole:  $1.377/-1.379 \text{ e}\text{\AA}^{-3}$ , GOF = 0.732. X-ray diffraction data for **1** were collected on a SMART APEX2 area-detector diffractometer (graphite monochromator,  $\omega$ -scan technique) using MoK $\alpha$  radiation ( $0.71073$  Å).



**Figure 1** Polymeric chain pattern of  $[\text{Yb(tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n$  in compound **1**.




**Figure 2** Temperature dependences of (1) the magnetic susceptibility and (2)  $\chi T$  for complex **1** ( $H = 5$  kOe).

number of Yb is 8, and the polyhedron is a two-capped trigonal prism. The bridging CN ligands of the  $\text{Co}(\text{CN})_6$  fragment are in the *cis* position to each other, which determines the zigzag structure of the polymer chain. A branched system of hydrogen bonds with crystallization  $\text{H}_2\text{O}$  molecules combines structural units into a framework.

The studies of magnetic susceptibility<sup>§</sup> have shown that the value of  $\chi T$  at 300 K is  $2.14 \text{ cm}^3 \text{ K mol}^{-1}$ , which is close to the theoretical one for a single isolated  $\text{Yb}^{3+}$  ion ( $C = 2.57 \text{ cm}^3 \text{ K mol}^{-1}$ ). The value of  $\chi T$  decreased insignificantly with lowering temperature down to 200 K, and more noticeably with further cooling to reach a minimum value of  $1.27 \text{ cm}^3 \text{ K mol}^{-1}$  at 2 K (Figure 2). This behavior is typical for Yb complexes.<sup>19–23</sup>

No slow magnetic relaxation was detected for complex **1** in a zero magnetic field. Measurements of the ac-magnetic susceptibility in non-zero fields revealed a significant signal of imaginary component of the ac-magnetic susceptibility  $\chi''$  for **1** (Figures S3, S4). Varying the strength of the external dc-magnetic field allowed us to determine an optimal dc field under which the maximums of  $\chi''(\nu)$  were located at lowest frequencies corresponding to the longest relaxation times. The optimal dc-magnetic field was 1000 Oe. The value of  $\Delta E/k_{\text{B}} = 42$  K obtained using the sum of the Orbach, Raman, and direct relaxation mechanisms was close to an analogous value of 40 K found by the Arrhenius approximation in the high-temperature region (Figure 3). This fact indicates that, even at temperatures above 6 K, the Orbach mechanism makes the main contribution to the molecular relaxation. The results showed that the Kramers ion  $\text{Yb}^{3+}$  can be the basis for the development of single-molecule magnets with promising characteristics.



**Figure 3** Dependence of the relaxation time  $\tau$  on the reciprocal temperature  $T^{-1}$  for complex **1** under a 1000 Oe field. The data were obtained by the  $\chi''(\nu)$  approximation using the generalized Debye model. The blue dashed and solid red lines refer to the Arrhenius approximation of high-temperature data and an approximation by the sum of the Orbach, Raman, and direct relaxation mechanisms, respectively.

CCDC 2181280 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <http://www.ccdc.cam.ac.uk>.

<sup>§</sup> For details of the magnetic study, see Online Supplementary Materials.

In summary, using an exchange reaction in an aqueous organic medium, we obtained the coordination polymer  $[\text{Yb}(\text{tpa})(\text{H}_2\text{O})_2\text{Co}(\text{CN})_6]_n \cdot 7n \text{ H}_2\text{O}$  built of 3d- and 4f-containing units connected with each other *via* bridging cyano ligands. The complex exhibits the properties of a single-chain magnet under an external field of 1000 Oe with the magnetization reversal barrier  $\Delta E/k_{\text{B}} = 42$  K, which is a promising value for  $\text{Yb}^{3+}$  derivatives.

The study was carried out using the research equipment of the Center for Collective Use of Physical Investigation Methods of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

This work was supported by the Russian Science Foundation (grant no. 22-23-00574).

#### Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi: 10.1016/j.mencom.2023.01.013.

#### References

- 1 D. S. Yambulatov, S. A. Nikolaevskii, M. A. Shmelev, K. A. Babeshkin, D. V. Korchagin, N. N. Efimov, A. S. Goloveshkin, P. A. Petrov, M. A. Kiskin, M. N. Sokolov and I. L. Eremenko, *Mendelev Commun.*, 2021, **31**, 624.
- 2 V. I. Ovcharenko, A. B. Sheremetev, K. V. Strizhenko, S. V. Fokin, G. V. Romanenko, A. S. Bogomakov, V. A. Morozov, M. A. Syroeshkin, A. Ya. Kozmenkova, A. V. Lalov and M. P. Egorov, *Mendelev Commun.*, 2021, **31**, 784.
- 3 V. V. Spiridonov, M. I. Afanasov, L. A. Makarova, A. V. Sybachin and A. A. Yaroslavov, *Mendelev Commun.*, 2021, **31**, 412.
- 4 J. Bartolomé, F. Luis and J. F. Fernández, *Molecular Magnets: Physics and Applications*, Springer, Heidelberg, 2014.
- 5 R. Lescouëzec, L. M. Toma, J. Vaissermann, M. Verdaguér, F. S. Delgado, C. Ruiz-Pérez, F. Lloret and M. Julve, *Coord. Chem. Rev.*, 2005, **249**, 2691.
- 6 S. Tanase and J. Reedijk, *Coord. Chem. Rev.*, 2006, **250**, 2501.
- 7 M. Verdaguér and A. N. Gleizes, *Eur. J. Inorg. Chem.*, 2020, 723.
- 8 J.-H. Wang, Z.-Y. Li, M. Yamashita and X.-H. Bu, *Coord. Chem. Rev.*, 2021, **428**, 213617.
- 9 A. Figueroa, C. Diaz, J. Ribas, V. Tangoulis, C. Sangregorio, D. Gatteschi, M. Maestro and J. Mahia, *Inorg. Chem.*, 2003, **42**, 5274.
- 10 A. Figueroa, J. Ribas, D. Casanova, M. Maestro, S. Alvarez and C. Diaz, *Inorg. Chem.*, 2005, **44**, 6949.
- 11 H. Zhao, N. Lopez, A. Prosvirin, H. T. Chifotides and K. R. Dunbar, *Dalton Trans.*, 2007, 878.
- 12 S. P. Petrosyants, A. B. Ilyukhin, N. N. Efimov and V. M. Novotortsev, *Russ. J. Coord. Chem.*, 2018, **44**, 660 (*Koord. Khim.*, 2018, **44**, 383).
- 13 S. P. Petrosyants, A. B. Ilyukhin, N. N. Efimov, A. V. Gavrikov and V. M. Novotortsev, *Inorg. Chim. Acta*, 2018, **482**, 813.
- 14 S. Chorazy, J. Wang and S. Ohkoshi, *Chem. Commun.*, 2016, **52**, 10795.
- 15 S. Chorazy, M. Rams, J. Wang, B. Sieklucka and S. Ohkoshi, *Dalton Trans.*, 2017, **46**, 13668.
- 16 S. Chorazy, K. Kumar, K. Nakabayashi, B. Sieklucka and S. Ohkoshi, *Inorg. Chem.*, 2017, **56**, 5239.
- 17 S. Pal, K. Dey, S. Benmansour, C. J. Gómez-García and H. P. Nayek, *New J. Chem.*, 2019, **43**, 6228.
- 18 D. Visinescu, M.-G. Alexandru, D. G. Dumitrescu, S. Shova, N. Moliner, F. Lloret and M. Julve, *CrystEngComm*, 2021, **23**, 4615.
- 19 F. Pointillart, B. Le Guennic, S. Golhen, O. Cador, O. Maury and L. Ouahab, *Chem. Commun.*, 2013, **49**, 615.
- 20 S. P. Petrosyants, K. A. Babeshkin, A. V. Gavrikov, A. B. Ilyukhin, E. V. Belova and N. N. Efimov, *Dalton Trans.*, 2019, **48**, 12644.
- 21 A. V. Gavrikov, N. N. Efimov, A. B. Ilyukhin, Z. V. Dobrokhotova and V. M. Novotortsev, *Dalton Trans.*, 2018, **47**, 6199.
- 22 A. V. Gavrikov, P. S. Koroteev, N. N. Efimov, Z. V. Dobrokhotova, A. B. Ilyukhin, A. K. Kostopoulos, A.-M. Ariciu and V. M. Novotortsev, *Dalton Trans.*, 2017, **46**, 3369.
- 23 K. A. Babeshkin, A. V. Gavrikov, S. P. Petrosyants, A. B. Ilyukhin, E. V. Belova and N. N. Efimov, *Eur. J. Inorg. Chem.*, 2020, **46**, 4380.

Received: 27th June 2022; Com. 22/6942