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molecule agonists to achieve its activation and 
ring of glucose levels as an approach to treating 
he most advanced FFAR1 agonist is fasiglifam 

trated promising efficacy in patients. 
was disconnected in phase III clinical trial due 
liver toxicity.3 This intensified the search for 
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e interaction with a protein target of interest5), 
uration (expressed as fraction of sp3-hybridized 
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ee’ (SAFE) diazo transfer in water.15 This 
r in situ generation of the diazo transfer reagent 

oiding the handling of potentially hazardous 

material. Without purification, diazo compound 4 was coupled 
with 2-bromoethanol in the presence of a catalytic amount 
of  rhodium(ii) espionate, bis[rhodium(α,α,α',α'-tetramethyl
benzene-1,3-dipropionic acid)], Rh2(esp)2.16 The initial product 
of rhodium carbene O–H insertion reaction, compound 5, was 
treated with sodium hydride in DMF. This triggered deprotonation 
of the b-keto ester moiety and a subsequent intramolecular SN2 
reaction12 to give oxetane 6 in good yield over 3 steps. b-Keto 
esters can be coupled with various nitrogen bis-nucleophiles to 
produce heterocyclic compounds. In this case, we envisioned 
treatment with hydrazine hydrate to produce a pyrazolone17 
suitable for the installation of a carboxylic acid side chain via 
N-alkylation. Unfortunately, exposing compound 6 to 5-fold 
excess hydrazine hydrate in refluxing ethanol did not cause any 
appreciable conversion. Using more forcing reaction conditions 
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(1-butanol, 115 °C, sealed tube, 6 h) did drive the reaction 
forward but did not provide full conversion. Finally, raising the 
temperature to 140 °C and prolonging the reaction time to 18 h 
enabled complete conversion and produced novel spirocyclic 
pyrazolone 7 in 73% yield after chromatography. This compound 
was only lacking the propionic acid side chain to become the 
designer ligand for FFAR1. The installation of the side chain was 
envisioned via the Michael addition to methyl acrylate18 followed 
by ester hydrolysis. To our surprise, using a catalytic amount of 
potassium hydroxide in DMF either at room temperature or at 
40 °C did not result in any conversion over 2 days. Fortunately, 
with a stronger base such as ButOK in the same solvent at 0 °C 
the reaction went to completion within 30 min. Chromatographic 
purification on silica gel gave an impure product which had to be 
re-purified by high-performance liquid chromatography. Ester 8 
thus obtained was hydrolyzed with lithium hydroxide in 
methanol. The resulting carboxylic acid 2 was obtained in 32% 
yield over two steps, including one HPLC purification 
(Scheme 1).

Molecular characteristics defining drug likeness (i.e. the 
metrics stipulated by the Lipinski’s rule of five19 as well as polar 
surface area and number of rotatable bonds) are important 
determinants of compound’s uptake in vivo as well as desired 
performance as a therapeutic agent. Having enabled the new 
spiro-fused oxetane‑pyrazolone scaffold for fatty acid mimetics, 
we were curious to compare this compound to other FFAR1 
agonists for which efficacy has already been established 
(Table 1). It is obvious that compound 2 carries such advantages 
compared to other compounds as lower molecular weight and 
lipophilicity (allowing ample room for medicinal chemistry 
optimization20) as well as more rigid molecular structure, 
favorable from the intestinal and cellular absorption standpoint.21

In summary, we have developed the synthesis of a novel free 
fatty acid mimetic based on the hitherto undescribed spiro-fused 
oxetane‑pyrazolone scaffold. The compound is a prototype for 
the library of fatty acid mimetics intended for interrogation of 
free fatty acid receptors such as FFAR1, a diabetes drug target. 
The synthesis draws from the toolbox of diazo chemistry, 

including the SAFE diazo transfer reaction and Rhii-catalyzed 
O–H insertion reaction followed by base-triggered oxetane 
formation. The final compound is distinctly druglike and 
compares favorably to the know FFAR1 agonists in terms of 
molecular weight, lipophilicity and molecular flexibility. The 
results of the extended library synthesis and biological profiling 
will be reported in due course.
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Scheme  1  Reagents and conditions: i, NaN3 (2.0 equiv.), m-HO2CC6H4SO2Cl (1.3 equiv.), K2CO3 (2.6 equiv.), H2O, room temperature, 1 h; ii, Br(CH2)2OH, 
Rh2(esp)2 (0.3 mol%), CH2Cl2, room temperature, 1 h; iii, NaH (1.2 equiv.), DMF, 0 °C, 2 h (25% over 3 steps); iv, N2H4∙H2O, 1-butanol, 140 °C, sealed tube, 
18 h (73%); v, CH2=CHCO2Me (1.2 equiv.), ButOK (0.2 equiv.), DMF, 0 °C; vi, HPLC purification; vii, LiOH (2 equiv.), MeOH, room temperature, 18 h 
(32% over 3 steps).

Table  1  Molecular characteristics of compounds 1, 2, fasiglifam and 
LY2881835 (calculated using www.molinspirations.com). 

Compound HBAa HBDa MWb cLogPc TPSAd/Å nRotBe
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Fasiglifam 7 1 510.6 3.13 99.1 10
LY2881835 4 1 481.6 4.96 49.8   8

a HBA/HBD is number of hydrogen bond acceptors/donors, respectively. 
b MW is molecular weight. c cLogP is calculated lipophilicity. d TPSA is 
total polar surface area. e nRotB is number of rotary bonds.
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